Philosophical remarks

Part of the Lecture Notes in Physics book series (LNP, volume 321)


Quantum Theory Causal Explanation Quantum Logic Brownian Particle Causal Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aspect, A., Grangier, P. and Roger, G. (1981), Experimental tests of realistic local theories via Bell's theorem, Phys. Rev. Lett. 47, 460, reprinted in Wheeler and Zurek (1983).Google Scholar
  2. Bellfante, F.J. (1973), A Survey of Hidden-Variable Theories, Pergamon, Oxford.Google Scholar
  3. Bell, E.T. (1973), Men of Mathematics, Simon and Schuster, New York.Google Scholar
  4. Bell, J.S. (1964), On the Einstein-Podolsky-Rosen paradox, Physics 1, 195.Google Scholar
  5. Beltrametti, E.G. and van Fraassen, B.C. (1981) eds., Current Issues in Quantum Logic, Plenum, New York.Google Scholar
  6. Birkhoff, G. and von Neumann, J. (1936), The logic of quantum mechanics, Ann. Math. 37, 823.Google Scholar
  7. Black, M. (1967), Probability, Encyclopedia of Philosophy, Macmillan, New York.Google Scholar
  8. Bohm, D. (1951), Quantum Theory, Prentic-Hall, Englewood Cliffs, NJ.Google Scholar
  9. Bohm, D. (1952), A suggested interpretation of quantum theory in terms of “hidden variables”, Phys. Rev. 85, 180, reprinted in Wheeler and Zurek (1983).Google Scholar
  10. Bohm, D. (1981), Wholeness and the Implicate Order, Rutledge and Kegan, London.Google Scholar
  11. Bohr, N. (1949), Discussions with Einstein on epistemological problems in atomic physics, in P.A. Schlipp ed., Albert Einstein Philosopher—Scientist, The Library of Living Philosphers, Evanston, reprinted in Wheeler and Zurek (1983).Google Scholar
  12. Bonferroni, C.E. (1936a), Teorie statistica delle classi e calcolo delle probabilita, Public Inst. Sup. Sc. Ec. e Comm. di Firenze 8, 1.Google Scholar
  13. Bonferroni, C.E. (1936b), II calcolo delle assicurazioni su grappi di teste, Studi in Onore del Prof. S.O. Carboni, Roma.Google Scholar
  14. Bub, J. (1977), The Interpretation of Quantum Mechanics, Reidel, DordrechtGoogle Scholar
  15. Bub, J. and Pitowsky, I. (1985), Critical notice on K.R. Popper's postscript to the logic of scientific discovery, Can. J. of Phil. 15, 539.Google Scholar
  16. Capra, F. (1975), The Tau of Physics, Shambahala, Berkeley, CA.Google Scholar
  17. Carnap, R. (1950), Logical Foundations of Probability, U. of Chicago Press, Chicago, IL.Google Scholar
  18. Clauser, J.F. and Horne, M.A. (1974), Experimental consequences of objective local theories, Phys. Rev. D. 10, 526.Google Scholar
  19. Clauser, J.F. and Shimony, A. (1978), Bell's theorem. Experimental tests and implications, Rep. Prog. Phys. 41, 1881.Google Scholar
  20. Clauser, J.F., Horne, M.A., Shimony, A. and Holt, R.A. (1969), Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 83, 880, reprinted in Wheeler and Zurek (1983).Google Scholar
  21. Cohen, P. (1966), Set Theory and the Continuum Hypothesis, Benjamin, New York.Google Scholar
  22. Cooke, R., Keane, M. and Moran, W. (1985), An elementary proof of Gleason's theorem, Math. Proc. Comb. Phil. Soc. 98, 117.Google Scholar
  23. d'Espangant, B. (1971), Conceptual Foundations of Quantum Mechanics, W.A. Benjamin, Menlo Park, CA.Google Scholar
  24. De Finnetti, B. (1972), Proabability Induction and Statistics, Wiley.Google Scholar
  25. Dummett, M. (1978), Is logic empirical?, in Truth and Other Enigmas, Harvard University Press, Cambridge, MA.Google Scholar
  26. Einstein, A., Podolsky, B. and Rosen, W. (1935), Can quantum mechanical description of physical reality be considered complete?, Phys. Rev. 47 777, reprinted in Wheeler and Zurek (1983).Google Scholar
  27. Fine, A. (1982a), Hidden variables, joint probability and Bell inequalities, Phys. Rev. Lett. 48, 291.Google Scholar
  28. Fine, A. (1982b), Reply to Garg A. and Mermin N.D., Phys. Rev. Lett. 49, 243.Google Scholar
  29. Finkelstein, D. (1962), The logic of quantum physics, Trans. New York Acad. of Sci. 25, 621.Google Scholar
  30. Finkelstein, D. (1968), Matter, space and logic, in R. Cohen and M. Wartofsky, eds., Boston Studies in the Philosophy of Science 5, 199, Reidel, Dordrecht.Google Scholar
  31. Fréchet, M. (1940), Les Probabilités Associées a un Systéme D'Événtments Compatibles et Dépandants, Hermann, Paris.Google Scholar
  32. Garey, M.R. and Johnson, D.S. (1979), Computers and Intractability, A Guide to the Theory of NP-Completeness, W.H. Freeman, New York.Google Scholar
  33. Garg, A. and Mermin, N.D. (1982a), Bell inequalities with range of violation that does not diminish as the spin becomes arbitrarily large, Phys. Rev. Lett. 49, 901.Google Scholar
  34. Garg, A. and Mermin, N.D. (1982b), Comment on “Hidden variables, joint probability and Bell inequalities”, Phys. Rev. Lett. 49, 242.Google Scholar
  35. Garg, A. and Mermin, N.D. (1983), Local realism and measured correlations in the spin s Einstein-Podolsky-Rosen experiment, Phys. Rev. D. 27, 339.Google Scholar
  36. Garg, A. and Mermin, N.D. (1984), Farkas's lemma and the nature of reality: Statistical implications of quntum correlations, Found. of Phys. 14, 1.Google Scholar
  37. Gauss, K.F. (1831), Letters to Olbers, Collected Works vol. II, 177.Google Scholar
  38. Gleason, A.M. (1957), Measures on the closed subspaces of a Hilbert space, J. Math. and Mech. 6, 885.Google Scholar
  39. Gödel, K. (1940), The consistency of the axiom of choice and the generalized continuum hypothesis, Annals of Math 3, Princeton U. Press, Princeton, NJ.Google Scholar
  40. Gudder, S.P. (1970), On hidden variable theories, J. Math. Phys. 11, 481.Google Scholar
  41. Gudder, S.P. (1984a), Probability manifolds, J. Math. Phys. 25, 2397.Google Scholar
  42. Gudder, S.P. (1984b), Reality, locality and probability, Found. of Phys. 14, 997.Google Scholar
  43. Gudder, S. P. (1985), Amplitude phase space model for quantum mechanics, Int. J. of Theor. Phys. 24, 343.Google Scholar
  44. Gudder, S.P. (1988), Quantum Probability, Academic Press, Orlando, FL.Google Scholar
  45. Hewitt, E. and Ross, K.A. (1979), Abstract Harmonic Analysis, Springer, Berlin.Google Scholar
  46. Hume, D. (1739), A Treatise of Human Nature, modern edition: D.G.L. Macnabb ed., Fontana/Collins, Glasgow.Google Scholar
  47. Jech, T.J. (1973), The Axiom of Choice, North Holland, Amsterdam.Google Scholar
  48. Jauch, J.M. (1968), Foundations of Quantum Mechanics, Addison-Wesley, Reading, MA.Google Scholar
  49. Karp, R.M. and Papadimitriou, C.H. (1980), On linear characterizations of combinatiorial optimization problems, Proc. of the 21 Symp. Found. Comput. Sci., 1.Google Scholar
  50. Keynes, J.M. (1943), A Treatise on Probability, McMillan, London (originally published in 1923).Google Scholar
  51. Kochen, S. and Specker, E.P. (1967), The problem of hidden variables in quantum mechanics, J. Math. and Mech. 17, 59.Google Scholar
  52. Macdonald, A.L. (1982), Comment on “Resolution of the Einstein-Podolsky-Rosen and Bell paradoxes”, Phys. Rev. Lett. 49, 1214.Google Scholar
  53. Mandelbrot, B. (1977), Fractals — Form, Chance and Dimension, W.H. Freeman, San Francisco.Google Scholar
  54. Mermin, N.D. (1982), Comment on “Resoultion of the Einstein-Podolsky-Rosen and Bell paradoxes”, Phys. Rev. Lett. 49, 1215.Google Scholar
  55. Mermin, N.D. and Schwarz, G. (1982), Joint distributions and local realism in the higher spin Einstein-Podolsky-Rosen experiment, Found. of Phys. 12, 101.Google Scholar
  56. Messiah, A. (1963), Quantum Mechanics, North Holland, Amsterdam.Google Scholar
  57. Mott, N.F. and Massey, H.S.W. (1965), The Theory of Atomic Collisions, Claredon Press, Oxford.Google Scholar
  58. Pitowsky, I. (1982a), Substitution and truth in quantum logic, Philos. of Sci. 49, 380.Google Scholar
  59. Pitowsky, I. (1982b), Resolution of the Einstein-Podolsky-Rosen and Bell paradoxes, Phys. Rev. Lett. 48, 1299.Google Scholar
  60. Pitowsky, I. (1983), Deterministic model of spin and statistics, Phys. Rev. D. 27, 2316.Google Scholar
  61. Pitowsky, I. (1985a), On the status of statistical inferences, Synthese 63, 233.Google Scholar
  62. Pitowsky, I. (1985b), Discussion: Quantum mechanics and value definiteness, Philos. of Sci. 52, 154.Google Scholar
  63. Pitowsky, I. (1985c), A phase space model of quantum mechanics in which all operators commute, in L.M. Roth and A. Inomata, eds., Foundamental Questions in Quantum Mechanics, Gordon and Breach, New York.Google Scholar
  64. Pitowsky, I. (1986), The range of quantum probability, J. Math of Phys. 27, 1556.Google Scholar
  65. Pitowsky, I. (1988), Correlation polytopes, their geometry and complexity, forthcoming.Google Scholar
  66. Popper, K.R. (1959), The Logic of Scientific Discovery, Basic Books, New York (German original 1934).Google Scholar
  67. Putnam, H. (1968), Is logic empirical? in R. Cohen and M. Wartofsky, eds., Boston Studies in the Philosophy of Science, Vol. 5, Reidel, Dordrecht.Google Scholar
  68. Putnam, H. (1976), How to think quantum logically, in P. Suppes, ed., Logic and Probability in Quantum Mechanics, Reidel, Dordrecht.Google Scholar
  69. Putnam, H. (1983), Models and reality, in Realism and Reason, Cambridge U. Press, Cambridge.Google Scholar
  70. Quine, W.V.O. (1953), Two dogmas of empiricism, in From a Logical Point of View, Harper and Row, New York.Google Scholar
  71. Quine, W.V.O. (1975), On empirically equivalent systems of the world, Erkenntnis IX, 313.Google Scholar
  72. Ramsey, F.P. (1926), Truth and probability, in R.B. Brathwaite, ed., The Foundations of Mathematics, Routledge and Kegan, London.Google Scholar
  73. Reichenbach, H. (1944), Philosophical Foundations of Quantum Mechanics, University of California Press, Berkeley.Google Scholar
  74. Rockafeller, R.T. (1970), Convex Analysis, Princeton University Press, Princeton.Google Scholar
  75. Shaeffer, T.J. (1978), The complexity of satistiability problem, Proc. 10th. Ann. Syp. on Theory of Computing, 216, Association for Computing Machinary, New York.Google Scholar
  76. Shelah, S. (1984), Can you take Solovay's inaccessible away? Israel J. of Math. 48, 1.Google Scholar
  77. Shimony, A. (1984), Contextual hidden variable theories and Bell inequalities, Brit. J. Phil. Sci. 35, 25.Google Scholar
  78. Solovay, R.M. (1970), A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. 92, 1.Google Scholar
  79. Stairs, A. (1983), Quantum logic, realism and value definiteness, Phil. of Sc. 50, 578.Google Scholar
  80. van Fraasen, B.C. (1980), The Scientific Image, Oxford U. Press, oxford.Google Scholar
  81. van Fraassen, B.C. (1982), The Charidbis or realism: Epistemological implications of Bell's inequality, Synthese 52, 885.Google Scholar
  82. Varadarajan, V. (1962), Geometry of Quantum Theory, Vol. I, II, van Nostrand, Princeton, NJ.Google Scholar
  83. von Mises, R. (1957), Probability Statistics and Truth, Dover, New York (original German edition, 1928).Google Scholar
  84. von Neumann, J. (1955), Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton (original German edition, 1933).Google Scholar
  85. Wheeler, J.A. and Zurek, W.H. (1983), eds., Quantum Theory and Measurement, Princeton University Press, Princeton.Google Scholar
  86. Wigner, E.P. (1961), Remarks on the mind-body question in Symmetries and Reflections, Indiana University Press, Bloomington, reprinted in Wheeler and Zurek, 1983.Google Scholar
  87. Wigner, E.P. (1970), On hidden variables and quantum mechanical probabilities, Amer. Jour. Phys. 38, 1005.Google Scholar
  88. Wigner, E.P. (1976), Interpretation of quantum mechanics, mimeographed note, reprinted in Wheeler and Zurek, 1983.Google Scholar
  89. Wittgenstein, L. (1939), On Certainty, eds.: E.M. Enscomb and G.H. von Wright, Blackwell, Oxford.Google Scholar
  90. Yemlichev, A.V., Kovalev, M.M. and Kravtsov, M.K. (1984), Polytopes, Graphs and Optimizations, Cambridge University Press, Cambridge (Russian original, 1981).Google Scholar

Copyright information

© Springer-Verlag 1989

Personalised recommendations