Skip to main content

General hybrid dynamical systems: Modeling, analysis, and control

  • Conference paper
  • First Online:
Hybrid Systems III (HS 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1066))

Included in the following conference series:

Abstract

Complex systems typically possess a hierarchical structure, characterized by continuous-variable dynamics at the lowest level and logical decision-making at the highest. Virtually all control systems today perform computer-coded checks and issue logical as well as continuous-variable control commands. Such are “hybrid” systems. In this paper, we introduce a formal notion of such systems: “general hybrid dynamical systems”; they are interacting collections of dynamical systems, evolving on continuous-variable state spaces, and subject to continuous controls and discrete phenomena. We discuss modeling issues, giving definitions and conditions for hybrid trajectories and providing a taxonomy for hybrid systems models. We review our hybrid systems analysis results, including topological issues, complexity and computation, stability tools, and analyzed examples. We summarize our hybrid control results, including optimal control theory, control algorithms, and solved examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Alur, C. Couroubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In [27], pp. 209–229.

    Google Scholar 

  2. P. Anstaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid Systems II. Lecture Notes in Computer Science. Springer-Verlag, New York, 1995.

    Google Scholar 

  3. P.J. Antsaklis, J.A. Stiver, and M.D. Lemmon. Hybrid system modeling and autonomous control systems. In [27], pp. 366–392.

    Google Scholar 

  4. A. Back, J. Guckenheimer, and M. Myers. A dynamical simulation facility for hybrid systems. In [27], pp. 255–267.

    Google Scholar 

  5. D.D. Bainov and P.S. Simeonov. Systems with Impulse Effect. Ellis Horwood, Chichester, England, 1989.

    Google Scholar 

  6. E.A. Barbashin. Introduction to the Theory of Stability. Wolters-Noordhoff, Groningen, The Netherlands, 1970.

    Google Scholar 

  7. N.P. Bhatia and G.P. Szegö. Dynamical Systems: Stability Theory and Applications, vol. 35 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1967.

    Google Scholar 

  8. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society, 21(1):1–46, July 1989.

    Google Scholar 

  9. L. Bobrow and M. Arbib. Discrete Mathematics. W.B. Saunders, Phila., 1974.

    Google Scholar 

  10. M.S. Branicky. Topology of hybrid systems. In Proc. IEEE Conf. Decision and Control, pp. 2309–2314, San Antonio, December 1993.

    Google Scholar 

  11. M.S. Branicky. Why you can't build an arbiter. Tech. Rep. LIDS-P-2217, Lab. for Information and Decision Systems, Massachusetts Institute of Tech., Dec. 1993.

    Google Scholar 

  12. M.S. Branicky. Analyzing continuous switching systems: Theory and examples. In Proc. American Control Conf., pp. 3110–3114, Baltimore, June 1994.

    Google Scholar 

  13. M.S. Branicky. Continuity of ODE solutions. Applied Mathematics Letters, 7(5):57–60, 1994.

    Article  MathSciNet  Google Scholar 

  14. M.S. Branicky. Stability of switched and hybrid systems. In Proc. IEEE Conf. Decision and Control, pp. 3498–3503, Lake Buena Vista, FL, December 1994.

    Google Scholar 

  15. M.S. Branicky. Studies in Hybrid Systems: Modeling, Analysis, and Control. PhD thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, June 1995.

    Google Scholar 

  16. M.S. Branicky. Universal computation and other capabilities of hybrid and continuous dynamical systems. Theoretical Computer Science, 138(1):67–100, 1995.

    Article  Google Scholar 

  17. M.S. Branicky, V. Borkar, and S.K. Mitter. A unified framework for hybrid control. Tech. Rep. LIDS-P-2239, Lab. for Information and Decision Systems, Massachusetts Institute of Technology, April 1994. Also: [18, 19].

    Google Scholar 

  18. M.S. Branicky, V.S. Borkar, and S.K. Mitter. A unified framework for hybrid control. In Cohen and Quadrat [22], pp. 352–358. Extended Abstract.

    Google Scholar 

  19. M.S. Branicky, V.S. Borkar, and S.K. Mitter. A unified framework for hybrid control. In Proc. IEEE Conf. Decision and Control, pp. 4228–4234, Lake Buena Vista, FL, December 1994.

    Google Scholar 

  20. R.W. Brockett. Smooth dynamical systems which realize arithmetical and logical operations. In H. Nijmeijer and J.M. Schumacher, editors, Lecture Notes in Control and Information Sciences. Three Decades of Mathematical Systems Theory, pp. 19–30. Springer-Verlag, Berlin, 1989.

    Google Scholar 

  21. R.W. Brockett. Hybrid models for motion control systems. In H.L. Trentelman and J.C. Willems, editors, Essays in Control: Perspectives in the Theory and its Applications, pp. 29–53. Birkhäuser, Boston, 1993.

    Google Scholar 

  22. G. Cohen and J.-P. Quadrat, editors. Proceedings 11th INRIA International Conference on the Analysis and Optimization of Systems, vol. 199 of Lecture Notes in Control and Information Sciences. Springer-Verlag, New York, 1994.

    Google Scholar 

  23. O.L.V. Costa. Impulse control of piecewise-deterministic processes via linear programming. IEEE Trans. Automatic Control, 36(3):371–375, 1991.

    Article  Google Scholar 

  24. O.L.V. Costa and M.H.A. Davis. Impulse control of piecewise deterministic processes. Math. Control Signals Syst., 2:187–206, 1989.

    Google Scholar 

  25. A. Deshpande and P. Varaiya. Viable control of hybrid systems. In [2].

    Google Scholar 

  26. S.D. Gennaro, C. Horn, S.R. Kulkarni, and P.J. Ramadge. Reduction of timed hybrid systems. In Proc. IEEE Conf. Decision and Control, pp. 4215–4220, Lake Buena Vista, FL, December 1994.

    Google Scholar 

  27. R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors. Hybrid Systems, vol. 736 of Lecture Notes in Computer Science. Springer-Verlag, New York, 1993.

    Google Scholar 

  28. Y.-C. Ho, editor. Discrete Event Dynamic Systems: Analyzing Complexity and Performance in the Modern World. IEEE Press, Piscataway, NJ, 1992.

    Google Scholar 

  29. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, 1979.

    Google Scholar 

  30. A.N. Kolmogorov and S.V. Fomin. Introductory Real Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1970.

    Google Scholar 

  31. L.R. Marino. General theory of metastable operation. IEEE Trans. on Computers, 30(2):107–115, 1981.

    Google Scholar 

  32. G. Meyer. Design of flight vehicle management systems. In Proc. IEEE Conf. Decision and Control, Lake Buena Vista, FL, December 1994. Plenary Lecture.

    Google Scholar 

  33. A. Nerode and W. Kohn. Models for hybrid systems: Automata, topologies, stability. In [27], pp. 317–356.

    Google Scholar 

  34. L. Padulo and M.A. Arbib. System Theory; A Unified State-Space Approach to Continuous and Discrete Systems. W. B. Saunders, Philadelphia, 1974.

    Google Scholar 

  35. S.M. Ross. Applied Probability Models with Optimization Applications. Dover, New York, 1992.

    Google Scholar 

  36. K.S. Sibirsky. Introduction to Topological Dynamics. Noordhoff International Publishing, Leyden, The Netherlands, 1975. Translated by Leo F. Boron.

    Google Scholar 

  37. E.D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems, vol. 6 of Texts in Applied Mathematics. Springer-Verlag, New York, 1990.

    Google Scholar 

  38. G. Stein. Personal communication. March 1992.

    Google Scholar 

  39. L. Tavernini. Differential automata and their discrete simulators. Nonlinear Analysis, Theory, Methods, and Applications, 11(6):665–683, 1987.

    Google Scholar 

  40. S. Ward and R. Halstead. Computation Structures. MIT Press, Cambridge, 1989.

    Google Scholar 

  41. H.S. Witsenhausen. A class of hybrid-state continuous-time dynamic systems. IEEE Trans. Automatic Control, 11(2):161–167, 1966.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rajeev Alur Thomas A. Henzinger Eduardo D. Sontag

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Branicky, M.S. (1996). General hybrid dynamical systems: Modeling, analysis, and control. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds) Hybrid Systems III. HS 1995. Lecture Notes in Computer Science, vol 1066. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020945

Download citation

  • DOI: https://doi.org/10.1007/BFb0020945

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61155-4

  • Online ISBN: 978-3-540-68334-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics