Advertisement

A CBL network model with intracortical plasticity and natural image stimuli

  • Thomas Burger
  • Elmar W. Lang
Part II: Cortical Maps and Receptive Fields
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1327)

Abstract

We present a simplified binocular neural network model of the primary visual cortex with separate ON/OFF-pathways and modifiable afferent as well as intracortical synaptic couplings. Natural image stimuli drive the weight adaptation which follows Hebbian learning rules stabilized with constant norm and constant sum constraints. The simulations consider the development of orientation selective cortical cells and orientation maps under different conditions concerning stimulus patterns and lateral couplings. Strong short range excitatory lateral connections emerge between individual cortical neurons with inhibitory couplings being less specific and rather diffuse.

Keywords

Receptive Field Input Pattern Primary Visual Cortex Lateral Coupling Synaptic Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burger, T., Kussinger, M., Ziegaus, C., Lang, E. W.: Emergence of orientation maps in area 17 of the cerebral cortex: A correlation-based model with afferent and lateral plasticity of synaptical weights and real input patterns. Proceedings of the 25th Göttingen Neurobiology Conference 1997, Ed. Elsner, N., Wässle, H. (Stuttgart, Germany: Georg Thieme Verlag) (1997)Google Scholar
  2. 2.
    Callaway, E. M., Katz, L. C.: Emergence and refinement of clustered horizontal connections in cat striate cortex. J. Neurosci. 10 (1990) 1134–53Google Scholar
  3. 3.
    Gilbert, C. D., Hirsch, J. A., Wiesel T. N.: 1990 Lateral interactions in visual cortex. Cold Spring Harbor Symposia on Quantitative Biology 55 663–77Google Scholar
  4. 4.
    Gilbert, C. D., Wiesel, T. N.: Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9 (1989) 2432–42Google Scholar
  5. 5.
    Katz, L. C., Callaway, E. M.: Development of local circuits in mammalian visual cortex. Ann. Rev. Neurosci. 15 (1992) 31–56Google Scholar
  6. 6.
    Katz, L. C., Gilbert, C. D., Wiesel, T. N.: Local circuits and ocular dominance columns in monkey striate cortex. J. Neurosci. 9 (1989) 1389–99Google Scholar
  7. 7.
    Linsker, R.: From basic networks principles to neural architecture (series). Proc. Natl. Sci. 83 (1986) 7508–12, 8390–4, 8779–83Google Scholar
  8. 8.
    Linsker, R.: Designing a sensory processing system: what can be learned from principal component analysis? Proc. of the Int. Joint Conf. on Neural Networks (IJCNN, Washington (DC), USA) (1990)Google Scholar
  9. 9.
    Miller, K. D.: A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON-and OFF-center inputs. J. Neurosci. 14 (1994) 409–41Google Scholar
  10. 10.
    Olshausen, B. A., Field, D. J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381 (1996) 607–609Google Scholar
  11. 11.
    Sirosh, J., Miikkulainen, R.: Cooperative self-organization of afferent and lateral connections in cortical maps. Biol. Cybern. 71 (1994) 65–78Google Scholar
  12. 12.
    Sirosh, J., Miikkulainen, R.: Topographic receptive fields and patterned lateral interaction in self-organization model of the primary visual cortex. Neural Computation 9 (1997) 577–94Google Scholar
  13. 13.
    Stetter, M., Lang, E. W., Müller, A.: Emergence of orientation selective simple cells simulated in deterministic and stochastic neural networks. Biol. Cybern. 68 (1993) 465–476Google Scholar
  14. 14.
    Stetter, M., Müller, A., Lang, E. W.: Neural network model for the coordinated formation of orientation preference and orientation selectivity maps. Phys. Rev. E 50 (1994) 4167–81Google Scholar
  15. 15.
    Stetter, M., Kussinger, M., Schels, A., Seeger E., Lang, E. W.: Self-organization of cortical receptive fields and columnar structures in a Hebb-trained neural network. Lecture Notes in Computer Science 930 (1995) 37–44Google Scholar
  16. 16.
    Yuille, A. L., Kammen, D. M., Cohen, D. S.: Quadrature and the development of orientation selective cortical cells by Hebb rules. Biol. Cybern. 61 (1989) 183–94Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Thomas Burger
    • 1
  • Elmar W. Lang
    • 1
  1. 1.Institut für Biophysik und physikalische BiochemieUniversität RegensburgRegensburgGermany

Personalised recommendations