Advertisement

Must pinwheels move during visual development ?

  • Fred Wolf
  • Theo Geisel
Part II: Cortical Maps and Receptive Fields
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1327)

Abstract

The pinwheel-like arrangement of iso-orientation domains around orientation centers is a ubiquitous structural element of orientation preference maps in primary visual cortex. Here we investigate how activity-dependent mechanisms constrain the way in which orientation centers can form during visual development. We consider the dynamics of a large class of models for the activity-dependent self-organization of orientation preference maps. We prove for this class of models that the density of orientation centers which proliferate as orientation selectivity arises from an unselective state exhibits a universal lower bound. At least π/Λ2 pinwheels must form initially, where d is the characteristic wavelength of iso-orientation domains. Due to topological constraints the density of orientation centers can only change by discrete creation and annihilation events. Consequently densities lower than π/Λ2 must develop through an initial overproduction and subsequent annihilation of pinwheels. Monitoring the density of orientation centers during development therefore offers a powerful novel approach to test whether orientation preference arises by activity-dependent mechanisms or is genetically predetermined.

Keywords

Nonlinear Phase Characteristic Wavelength Orientation Selectivity Gaussian Random Field Initial Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chapman, B. and Stryker, M. P. J. Neuroscience 13, 5251–5262 (1993).Google Scholar
  2. 2.
    Chapman, B., Stryker, M. P., and Bonhoeffer, T. J. Neuroscience 16, 6443–6453 (1996).Google Scholar
  3. 3.
    von der Malsburg, C. Kybernetik 14, 85–100 (1973).Google Scholar
  4. 4.
    Nass, M. M. and Cooper, L. N. Biol. Cybernetics 19, 1–18 (1975).Google Scholar
  5. 5.
    Daw, N. W. Visual Development. Plenum Press, New York, (1995).Google Scholar
  6. 6.
    Swindale, N. Network: Computation in Neural Systems 7, 161–247 (1996).Google Scholar
  7. 7.
    Miller, K. D. In Models of Neural Networks III, Domany, E., van Hemmen, J., and Schulten, K., editors. Springer-Verlag, NY (1995).Google Scholar
  8. 8.
    Halperin, B. I. In Physics of Defects, Les Houches, Session XXXV, 1980, Balian, R., Kléman, M., and Poirier, J.-P., editors (North-Holland, Amsterdam, 1981).Google Scholar
  9. 9.
    Durbin, R. and Mitchinson, G. Nature 343, 644–647 (1990).Google Scholar
  10. 10.
    Obermayer, K., Blasdel, G. G., and Schulten, K. Phys. Rev. A 45, 7568–7589 (1992).Google Scholar
  11. 11.
    Wiesel, T. N. and Hubel, D. H. J. Comp. Neurol. 158, 307–318 (1974).Google Scholar
  12. 12.
    Stryker, M. P. In Neuroscience Res. Prog. Bull., Vol. 15, No.3, chapter VII, 454–462. MIT Press (1977).Google Scholar
  13. 13.
    Changeux, J.-P. and Danchin, A. Nature 264, 705–712 (1976).Google Scholar
  14. 14.
    Obermayer, K. and Blasdel, G. G. Neural Computation 9, 555–575 (1997).Google Scholar
  15. 15.
    Bonhoeffer, T., Kim, D.-S., Malonek, D., Shoham, D., and Grinvald, A. Europ. J. Neuroscience 7, 1973–1988 (1995).Google Scholar
  16. 16.
    Bosking, W. H., Zhang, Y., Schofield, B. R., and Fitzpatrick, D. J. Neuroscience 17, 2112–2127 (1997).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Fred Wolf
    • 1
    • 2
  • Theo Geisel
    • 1
    • 2
  1. 1.Max-Planck Institut für StrömungsforschungGöttingen
  2. 2.SFB Nichtlineare DynamikUniversität FrankfurtGermany

Personalised recommendations