A linear hebbian model for the development of spatiotemporal receptive fields of simple cells

  • S. Wimbauer
  • O. Wenisch
  • J.L. van Hemmen
Part II: Cortical Maps and Receptive Fields
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1327)


We propose a linear Hebbian model that describes the development of spatiotemporal receptive fields as a competition between four types of input onto a cortical cell, viz., non-lagged ON and OFF inputs and lagged ON and OFF inputs. The outcome of the development is determined mainly by the spatial and the temporal correlations between the different inputs. We indicate what type of input correlation leads to a wide range of direction selectivity indices as found experimentally.


Receptive Field Cortical Cell Simple Cell Hebbian Learning Direction Selectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Adelson and J. R. Bergen. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A, 2:284–299, 1985.Google Scholar
  2. 2.
    G. C. DeAngelis, I. Ohzawa, and R. D. Freeman. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. general characteristics and postnatal development. J. Neurophysiol., 69:1091–1117, 1993.Google Scholar
  3. 3.
    G. C. DeAngelis, I. Ohzawa, and R. D. Freeman. Receptive-field dynamics in the central visual pathways. TINS, 18:451–458, 1995.Google Scholar
  4. 4.
    J. C. Feidler, A. B. Saul, A. Murthy, and A. L. Humphrey. Hebbian learning an the development of direction selectivity: the role of geniculate response timings. Network, 8:195–214, 1997.Google Scholar
  5. 5.
    D. O. Hebb. The Organization of Behavior. Wiley, New York, 1949.Google Scholar
  6. 6.
    D. H. Hubel and T. N. Wiesel. Receptive fields of single neurons in the cat's striate cortex. J. Physiol., 148:574–591, 1959.Google Scholar
  7. 7.
    D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol., 160:106–154, 1962.Google Scholar
  8. 8.
    D. H. Hubel and T. N. Wiesel. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol., 26:994–1002, 1963.Google Scholar
  9. 9.
    K. D. Miller. A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activitydependent competition between ON-and OFF-center inputs. J. Neurosci., 14:409–441, 1994.Google Scholar
  10. 10.
    K. D. Miller and D. J. C. MacKay. The role of constraints in Hebbian learning. Neural Comput., 6:100–126, 1994.Google Scholar
  11. 11.
    A. B. Saul and A. L. Humphrey. Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. J. Neurophysiol, 64:206–224, 90.Google Scholar
  12. 12.
    A. B. Watson and A. J. Ahumada. Model of human visual motion sensing. J. Opt. Soc. Am. A, 2:322–342, 1985.Google Scholar
  13. 13.
    S. Wimbauer. Raumzeitliche rezeptive Felder-Modellierung von Antworteigenschaften und Entwicklung einfacher Zellen im visuellen Cortex. Verlag Harri Deutsch, Frankfurt a. M., 1996.Google Scholar
  14. 14.
    S. Wimbauer, W. Gerstner, and J. L. van Hemmen. Emergence of spatiotemporal receptive fields and its application to motion detection. Biol. Cybern., 72:81–92, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • S. Wimbauer
    • 1
  • O. Wenisch
    • 1
  • J.L. van Hemmen
    • 1
  1. 1.Physik-DepartmentTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations