Skip to main content

How a single Purkinje cell could learn the adaptive timing of the classically conditioned eye-blink response

  • Part I: Coding and Learning in Biology
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

Experimental evidence supports the view that the cerebellum is involved in the adaptive timing of the classically conditioned eyeblink response. Previous modelling studies have demonstrated that a group of cerebellar Purkinje cells can learn the adaptive timing of the eye-blink response if the cells in the group have predefined response latencies which cover the range of conditionable interstimulus intervals (ISIS). Here we show how the timing can be learnt by a single Purkinje cell. Phosphorylation of metabotropic glutamate recptors (mGluRs) in our model causes the time delay between parallel fibre input and voltage response to be adaptive and makes it unnecessary to specify a conditionable ISI for each cell in advance. The model is able to learn conditioned responses (CRs) for delay conditioned ISIs between 200 and 1000 msec. Modification of parts of the intracellular signalling network might represent a general mechanism for neurons to learn the timing between input and output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCormick, D.A., Thompson, R.F. (1984). Neuronal responses of the rabbit cerebellum during aquisition and performance of a classically conditioned nictitating membrane-eyelid response. J. Neurosci. 4: 2811–2822.

    Google Scholar 

  2. McCormick, D.A., Clark, G.A., Lavond, D.G., Thompson, R.F. (1982). Initial localization of the memory trace for a basic form of learning. Proc. Natl. Acad. Sci. USA 79: 2731–2735.

    Google Scholar 

  3. Thompson, R.F., Krupa, D.J. (1994). Organization of memory traces in the mammalian brain. Ann. Rev. Neurosci. 17: 519–549.

    Google Scholar 

  4. Fiala, J.C., Grossberg, S., Bullock, D. (1996). Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. J. Neurosci. 16: 3760–3774.

    Google Scholar 

  5. Gormezano, I. (1966). Classical Conditioning. In: Experimental methods and instrumentation in psychology (Sidowski, J.B. ed.), 385–420. McGraw-Hill, New York.

    Google Scholar 

  6. Steinmetz, J.E. (1990). Classical nictitating membrane conditioning in rabbits with varying interstimulus intervals and direct activation of cerebellar mossy fibres as the CS. Behav. Brain Res. 38: 97–108.

    Google Scholar 

  7. Kawabata, S., Tsutsumi, R., Kohara, A., Yamaguchi, T., Nakanishi, S., Okada, M. (1996). Control of calcium oscillations by phosphorylation of metabotropic glutamate receptors. Nature 383: 89–92.

    Google Scholar 

  8. Wang, X., Robinson, P.J. (1995). Cyclic GMP dependent protein kinase substrates in rat brain. J. Neurochem. 65: 595–603.

    Google Scholar 

  9. Tegge, W., Frank, R., Hofmann, F., Dostmann, W.R.G. (1995). Determination of cyclic nucleotide-dependent protein kinase substrate specificity by the use of peptide libraries on cellulose paper. Biochemistry 34: 10569–10577.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steuber, V., Willshaw, D.J. (1997). How a single Purkinje cell could learn the adaptive timing of the classically conditioned eye-blink response. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020142

Download citation

  • DOI: https://doi.org/10.1007/BFb0020142

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics