Analogue resolution in a model of the Schaffer collaterals

  • Simon Schultz
  • Stefano Panzeri
  • Alessandro Treves
  • Edmund T. Rolls
Part I: Coding and Learning in Biology
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1327)


We have analytically and numerically solved the mutual information expression for a quantitative model of the Schaffer collateral projections from the CA3 to the CA1 pyramidal cells within the hippocampus. Here we discuss in particular results from the model on the effect of analogue coding levels in the Schaffer collaterals, and the fact that this depends upon the sparseness of firing rate distributions in the hippocampus.


Mutual Information Firing Rate Pyramidal Cell Sparse Code Perforant Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.J. Amit, H. Gutfreund, and H. Sompolinsky. Statistical mechanics of neural networks near saturation. Ann. Phys. (N. Y.), 173:30–67, 1987.Google Scholar
  2. 2.
    E. Gardner. The space of interactions in neural network models. J. Phys. A: Math. Gen., 21:257–270, 1988.Google Scholar
  3. 3.
    A. Treves. Threshold-linear formal neurons in auto-associative nets. J. Phys. A: Math. Gen., 23:2631–2650, 1990.Google Scholar
  4. 4.
    J-P. Nadal and N. Parga. Information processing by a perceptron in an unsupervised learning task. Network, 4:295–312, 1993.Google Scholar
  5. 5.
    D. G. Amaral, N. Ishizuka, and B. Claiborne. Neurons, numbers and the hippocampal network. In J. Storm-Mathisen, J. Zimmer, and O. P. Ottersen, editors, Understanding the brain through the hippocampus, volume 83 of Progress in Brain Research, chapter 17. Elsevier Science, 1990.Google Scholar
  6. 6.
    N. Ishizuka, J. Weber, and D. G. Amaral. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J. Comp. Neurol., 295:580–623, 1990.Google Scholar
  7. 7.
    S. Schultz, S. Panzeri, E. T. Rolls, and A. Treves. Quantitative analysis of a Schaffer collateral model. In R. Baddeley, P. Foldiäk, and P. Hancock, editors, Information Theory and the Brain. Cambridge University Press, Cambridge, U.K., 1997.Google Scholar
  8. 8.
    S. Panzeri, E. T. Rolls, A. Treves, R. G. Robertson, and P. Georges-Francois. Efficient encoding by the firing of hippocampal spatial view cells. Society for Neuroscience Abstracts Volume 23, 1997.Google Scholar
  9. 9.
    C. A. Barnes, B. L. McNaughton, S. J. Mizumori, B. W. Leonard, and L. H. Lin. Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. Prog. Brain Res., 83:287–300, 1990.Google Scholar
  10. 10.
    A. Treves. Quantitative estimate of the information relayed by the Schaffer collaterals. J. Comput. Neurosci., 2:259–272, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Simon Schultz
    • 1
  • Stefano Panzeri
    • 1
  • Alessandro Treves
    • 2
  • Edmund T. Rolls
    • 1
  1. 1.Department of Experimental PsychologyUniversity of OxfordOxfordUK
  2. 2.Programme in Neuroscience, SISSATriesteItaly

Personalised recommendations