The information content of action potential trains a synaptic basis

  • Henry Markram
  • Misha Tsodyks
Part I: Coding and Learning in Biology
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1327)


Electrical recordings from three neurons revealed that the same spike train emitted by one neuron had markedly different effects on two target neurons. A spike train from a single neocortical pyramidal neuron produced synaptic responses in two target pyramidal neurons that differed in response strength and rates of activity-dependent depression of synaptic transmission. When a pyramidal neuron targeted another pyramidal neuron as well as an interneuron, then responses were also qualitatively different. The responses onto the pyramidal neuron displayed marked activity-dependent depression while those onto the interneuron displayed marked activity-dependent facilitation. The results suggest that each target could have a unique response to the same presynaptic signal. The information contained within the spike train therefore appears to be fragmented and re-integrated into the network at specific locations. The degree to which the specific fragment extracted by each synapse, will influence the spiking activity of the neuron, depends the ongoing integration of input from other presynaptic neurons. It is therefore proposed that differential synaptic transmission enables the neocortex to encode and decode the information contained within spike trains in an associative manner.


Pyramidal Neuron Spike Train Synaptic Response Synaptic Efficacy Computational Significance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, C. & Stevens, C. F. Proc Nat Acad Sci USA 91, 10380–10383 (1994).Google Scholar
  2. 2.
    Softky, W. R. Curr Opin Neurobiol 5, 239–47 (1995).Google Scholar
  3. 3.
    Shadlen, M. N. & Newsome, W. T. Curr Opin Neurobiol 4, 569–79 (1994).Google Scholar
  4. 4.
    Betz, W. J. Physiol (Lond.) 206, 629–644 (1970).Google Scholar
  5. 5.
    Markram, H., Tsodyks, M. & Wang, Y. Differential signalling via the same axon from neocortical layer 5 pyramidal neurons, submitted (1997).Google Scholar
  6. 6.
    Tsodyks, M. & Markram, H. Proc Nat Acad Sci (USA) 94, 719–723 (1997).Google Scholar
  7. 7.
    Bertram, R., Sherman, A. & Stanely, E. F. Journ Neurophysiol 75, 1919–1931 (1996).Google Scholar
  8. 8.
    Thomson, A. M., Deuchars, J. & West, D. C. Neuroscience 54, 347–359 (1993).Google Scholar
  9. 9.
    Thomson, A. M. & Deuchars, J. Trends in Neuroscience 17, 119–126 (1994).Google Scholar
  10. 10.
    Tsodyks, M. & Markram, H. Lech Notes Comput Sci 1112, 445–450 (1996).Google Scholar
  11. 11.
    Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Science 275, 220–224 (1997).Google Scholar
  12. 12.
    Grinvald, A., Frostig, R. D. & Lieke, E. Proc Nat AcadSciences (USA) 68, 1285–1366 (1988).Google Scholar
  13. 13.
    Gray, C. M., Konig, P., Engel, A. K. & Singer, W. Nature 338, 334–7 (1989).Google Scholar
  14. 14.
    Abeles, M., Prut, Y., Bergman, H. & Vaadia, E. Prog. Brain. Res. 102, 395–404 (1994).Google Scholar
  15. 15.
    Albrecht, D. G., Farrar, S. B. & Hamilton, D. B. J. Physiol. (Lond.) 347, 713–39 (1984).Google Scholar
  16. 16.
    Maffei, L., Fiorentini, A. & Bisti, S. Science 182, 1036–8 (1973).Google Scholar
  17. 17.
    Markram, H. & Tsodyks, M. Nature 382, 807–810 (1996).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Henry Markram
    • 1
  • Misha Tsodyks
    • 1
  1. 1.Department of NeurobiologyWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations