Skip to main content

Testing hereditary properties efficiently on average

  • Contributed Papers
  • Conference paper
  • First Online:
Book cover Orders, Algorithms, and Applications (ORDAL 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 831))

Included in the following conference series:

Abstract

We use the quasi-ordering of substructure relations such as induced and weak subgraph, induced suborder, graph minor or subformula of a CNF formula to obtain recognition algorithms for hereditary properties that are fast on average. The ingredients needed besides inheritance are independence of the occurrence of small substructures in a random input and the existence of algorithms for recognition that are at most exponential.

Part of this work has previously been published in the first author's Ph.D. thesis, [Gus92].

Supported by the “Graduiertenkolleg Algorithmische Diskrete Mathematik”, DFG grant We 1265/2-1.

Supported by DFG grant Pr 296/2-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stefan Arnborg, Jens Lagergren, and Detlef Seese, Easy problems for tree-decomposable graphs, J. Algorithms 12 (1991), 308–340.

    Google Scholar 

  2. B. Bollobás, T.I. Fenner, and A.M. Frieze, An algorithm for finding hamilton paths and cycles in random graphs, in [STO85] (1985), 430–439.

    Google Scholar 

  3. L. Babai and L. Kucera, Canonical labelling of graphs in linear time, in [FOC79] (1979), 39–46.

    Google Scholar 

  4. Hans L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth, in [STO93] (1993).

    Google Scholar 

  5. Belá Bollobás, Random graphs, Academic Press, London, 1985.

    Google Scholar 

  6. K. J. Compton, The computational complexity of asymptotic problems. I: Partial orders, Inform. and Complexity 78 (1988), 103–123.

    Google Scholar 

  7. M.E. Dyer and A.M. Frieze, The solution of some random NP-hard problems in polynomial expected time, J. Algorithms 10 (1989), 451–489.

    Google Scholar 

  8. P. Erdős and A. Rényi, On the evolution of random graphs, Madyar Tnd. Akad. Mat. Kut. Int. Kőzl. 6 (1960), 17–61.

    Google Scholar 

  9. Michael R. Fellows, The Robertson-Seymour theorems: a survey of applications, see [GA89], 1989, pp. 1–18.

    Google Scholar 

  10. Michael R. Fellows and Michael A. Langston, Nonconstructive advances in polynomial-time complexity, Inform. Process. Lett. (1985).

    Google Scholar 

  11. Michael R. Fellows and Michael A. Langston, Nonconstructive tools for proving polynomial-time decidability, J. Assoc. Comput. Mach. 35 (1988), no. 3, 727–739.

    Google Scholar 

  12. Michael R. Fellows and Michael A. Langston, On well-partial-order theory and its application to combinatorial problems of VLSI design, SIAM J. Disc. Math. 5 (1992), no. 1, 117–126.

    Google Scholar 

  13. 20th Annual Symposion On Foundations of Computer Science, IEEE, The Institute of Electrical and Electronics Engineers, IEEE Computer Society Press, 1979.

    Google Scholar 

  14. John Franco and Marvin Paull, Probabilistic analysis of the Dams Putnam procedure for solving the satisfiability problem, Discrete Appl. Math. 5 (1983), 77–87.

    Google Scholar 

  15. A.M. Frieze, Probabilistic analysis of graph algorithms, Computing 7 (1990), 209–233.

    Google Scholar 

  16. Graphs and Algorithms (R. B. Richter, ed.), American Math. Soc., Contemp. Math., 89, 1989, Proceedings of the AMS-IMS-SIAM joint Summer Research Conference 1987.

    Google Scholar 

  17. Michael R. Garey and David S. Johnson, Computers and Intractability, W. H. Freeman and Company, New York, 1979.

    Google Scholar 

  18. Martin C. Golumbic, Algorithmic graph theory and perfect graphs, Academic Press, London, New York, 1980.

    Google Scholar 

  19. A. Goldberg, P. Purdom, and C. Brown, Average time analysis of simplified Davis-Putnam procedures, Inform. Process. Lett. 15 (1982), 72–75, Corrigendum, Inform. Process. Lett. 16 (1982), 213.

    Google Scholar 

  20. Jens Gustedt, Algorithmic aspects of ordered structures, Ph.D. thesis, Technische Universität Berlin, 1992.

    Google Scholar 

  21. T. H. Hu, C. Y. Tang, and R. C. T. Lee, An average case analysts of Monien and Speckmeyer's mechanical theorem proving algorithm, in [ISA91] (1991), 116–126.

    Google Scholar 

  22. ISA '91 Algorithms (Wen-Lian Hsu and R.C.T. Lee, eds.), Springer-Verlag, 1991, LNCS 557, Proceedings of the 2nd International Symposion on Algorithms, Taipei, Republic of China.

    Google Scholar 

  23. Kazuo Iwama, CNF satisfiability test by counting and polynomial average time, SIAM J. Comput. 18 (1989), no. 2, 385–391.

    Google Scholar 

  24. Svante Janson, Thomasz Luczak, and Andrezj Ruciński, An exponential bound for the probability of nonexistence of a specified subgraph in a random graph, Random Graphs '87 (M. Karoński, J. Jaworski, and A. Ruciński, eds.), John Wiley & Sons, New York, 1990, pp. 73–87.

    Google Scholar 

  25. David S. Johnson, The NP-completeness column: An ongoing guide, “Solving NP-hard Problems Quickly (On Average)”, J. Algorithms 5 (1984), 284–299.

    Google Scholar 

  26. Rolf H. Möhring, Graph problems related to gate matrix layout and PLA folding, Computational Graph Theory (Wien) (G. Tinhofer et al., eds.), Springer-Verlag, Wien, 1990, pp. 17–52.

    Google Scholar 

  27. Hans Jürgen Prömel and Angelika Steger, Coloring clique-free graphs in linear expected time, Random Structures and Algorithms 3 (1992), 374–402.

    Google Scholar 

  28. Hans Jürgen Prömel and Angelika Steger, Excluding induced subgraphs III: A general asymtotic, Random Structures and Algorithms 3 (1992), no. 1, 19–31.

    Google Scholar 

  29. Neil Robertson and Paul Seymour, Disjoint paths — a survey, SIAM J. Algebraic Discrete Methods 6 (1985), no. 2, 300–305.

    Google Scholar 

  30. Neil Robertson and Paul Seymour, Graph minors — a survey, Surveys in Combinatorics (Glasgow 1985) (I. Anderson, ed.), Cambridge Univ. Press, Cambridge-New York, 1985, pp. 153–171.

    Google Scholar 

  31. Proceedings of the Seventeenth Anual ACM Symposion on Theory of Computing, ACM, Assoc. for Comp. Machinery, 1985.

    Google Scholar 

  32. Proceedings of the Twenty Fifth Anual ACM Symposion on Theory of Computing, ACM, Assoc. for Comp. Machinery, 1993.

    Google Scholar 

  33. A.G. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984), 261–265.

    Google Scholar 

  34. H. S. Wilf, Backtrack: an O(1) texpected time algorithm for the graph coloring problem, Inform. Process. Lett. 18 (1984), 119–121.

    Google Scholar 

  35. Peter Winkler, Random orders, Order 1 (1985), 317–331.

    Google Scholar 

  36. Peter Winkler, A counterexample in the theory of random orders, Order 5 (1989), 363–368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vincent Bouchitté Michel Morvan

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gustedt, J., Steger, A. (1994). Testing hereditary properties efficiently on average. In: Bouchitté, V., Morvan, M. (eds) Orders, Algorithms, and Applications. ORDAL 1994. Lecture Notes in Computer Science, vol 831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0019429

Download citation

  • DOI: https://doi.org/10.1007/BFb0019429

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58274-8

  • Online ISBN: 978-3-540-48597-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics