Skip to main content

Geometric Hamiltonian structures and perturbation theory

  • Conference paper
  • First Online:
Local and Global Methods of Nonlinear Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 252))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Lagrange, “Mémoire sur la théorie des variations de éléments des planètes,” Mém. Cl. Sci. Math. Phys. Inst. France, 1–72 (1808).

    Google Scholar 

  2. A. Weinstein, “Symplectic Geometry,” Bull. Am. Math. Soc. 5 1–13 (1981).

    Google Scholar 

  3. H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Vols. 1, 2, 3 (Gauthier-Villars, Paris, 1892; Dover, New York, 1957).

    Google Scholar 

  4. E. Noether, Nachr. Gesell. Wiss. Göttingen 2, 136 (1918).

    Google Scholar 

  5. P. A. M. Dirac, The Principles of Quantum Mechanics, (Oxford University Press, 1958).

    Google Scholar 

  6. As in L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vols. 1–10 (Pergamon, New York, 1960-1981).

    Google Scholar 

  7. R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd edition (Benjamin/Cummings, Reading, Mass., 1978).

    Google Scholar 

  8. V. I. Arnol'd, Mathematical Methods of Classical Mechanics (Springer, Berlin, 1978).

    Google Scholar 

  9. J. R. Cary, “Lie transform perturbation theory of Hamiltonian systems,” Phys. Rep. 79, 131 (1981).

    Google Scholar 

  10. P. R. Chernoff and J. E. Marsden, Properties of Infinite Dimensional Hamiltonian Systems, Lecture Notes in Mathematics, 425 (Springer, New York, 1974).

    Google Scholar 

  11. P. J. Morrison and J. M. Greene, “Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics,” Phys. Rev. Lett. 45, 790–794 (1980).

    Google Scholar 

  12. J. E. Marsden and A. Weinstein, “Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids,” Physica 7D, 305–323 (1983).

    Google Scholar 

  13. J. E. Marsden, T. Ratiu, and A. Weinstein, “Semi-direct products and reduction in mechanics,” Trans. Am. Math. Soc. 281, pp. 147–177 (1984).

    Google Scholar 

  14. P. J. Morrison, “The Maxwell-Vlasov equations as a continuous Hamiltonian systems,” Phys. Lett. 80A, 383–396 (1980).

    Google Scholar 

  15. J. Marsden and A. Weinstein, “The Hamiltonian structure of the Maxwell-Vlasov equations,” Physica 4D, 394–406 (1982).

    Google Scholar 

  16. W. Pauli, Die Allgemeinen Prinzipien der Wellenmeckanik, Hand. der Phys., Vol 24, Part 1 (Springer, Berlin, 1933); General Principles of Quantum Mechanics (Springer, Berlin, 1981).

    Google Scholar 

  17. D. Holm and B. Kupershmidt, “Poisson brackets and Clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity,” Physica D.

    Google Scholar 

  18. J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity (Prentice-Hall, Englewood Cliffs, New Jersey, 1983).

    Google Scholar 

  19. R. G. Spencer and A. N. Kaufman, “Hamiltonian structure of two-fluid plasma dynamics,” Phys. Rev. A25, 2437–2439 (1982).

    Google Scholar 

  20. J. Gibbons, D. D. Holm, and B. Kupershmidt, “Gauge-invariant Poisson brackets for chromohydrodynamics,” Phys. Lett. 90A, 281–283 (1982).

    Google Scholar 

  21. D. D. Holm and B. A. Kupershmidt, “Poisson structures of superfluids,” submitted to Phys. Lett. A.

    Google Scholar 

  22. L. Faddeev and V. E. Zakharov, “Korteweg-de Vries as a completely integrable Hamiltonian system,” Functional Anal. Appl. 5, 280 (1971).

    Google Scholar 

  23. D. D. Holm, J. E. Marsden, T. Ratiu, and A. Weinstein, “A priori estimates for nonlinear stability of fluids and plasmas,” Preprint, 1984.

    Google Scholar 

  24. V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, (Cambridge University Press, Cambridge, 1984).

    Google Scholar 

  25. S. Omohundro, “Hamiltonian structures in perturbation theory,” submitted to J. of Math. Phys. (1984).

    Google Scholar 

  26. S. Omohundro, “A Hamiltonian approach to wave modulation,” Poster presented at Sherwood Plasma Theory Meeting, Lake Tahoe, April 1984 (in preparation for publication).

    Google Scholar 

  27. A. H. Nayfeh, Perturbation Methods (John Wiley, New York, 1973).

    Google Scholar 

  28. J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics (Springer, New York, 1981).

    Google Scholar 

  29. A. Weinstein, “The local structure of Poisson manifolds,” J. Diff. Geom. 18, 523–557 (1983).

    Google Scholar 

  30. J. E. Marsden, Lectures on Geometric Methods in Mathematical Physics, CBMS-NSF Reg. Conf. Series 37 (PA:SIAM, Philadelphia, 1981).

    Google Scholar 

  31. P. Olver, “Hamiltonian perturbation theory and water waves,” Fluids and Plasmas: Geometry and Dynamics, J. Marsden, Ed., Contemporary Mathematics, 28, 231 (1984).

    Google Scholar 

  32. J. Marsden and A. Weinstein, “Reduction of symplectic manifolds with symmetry,” Rep. Math. Phys. 5, 121–130 (1974).

    Google Scholar 

  33. V. Arnol'd, “Sur la géometrie differentielle des groupes de Lie de dimension infinie et ses applications a hydrodynamique des fluids parfaits,” Ann. Inst. Fourier Grenoble 16(1) 319–361 (1966).

    Google Scholar 

  34. J. Kijowski and W. Tulczyjew, A symplectic framework for field theories, Lecture Notes in Physics 107 (Springer, New York, 1979).

    Google Scholar 

  35. V. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, New York, 1983).

    Google Scholar 

  36. M. Kruskal, “Asymptotic theory of Hamiltonian and other systems with all solutions nearly periodic,” J. Math. Phys. 3, 806–828 (1962).

    Google Scholar 

  37. R. Kubo, H. Ichimura, T. Usui, and N. Hashitsume, Statistical Mechanics (North-Holland, Amsterdam, 1965).

    Google Scholar 

  38. G. Whitham, Linear and Nonlinear Waves (John Wiley, New York, 1974).

    Google Scholar 

  39. R. Littlejohn, J. Plasma Physics 29, 111 (1983).

    Google Scholar 

  40. N. van Kampen, “Constraints,” Preprint, March 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. W. Sáenz W. W. Zachary R. Cawley

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Omohundro, S. (1984). Geometric Hamiltonian structures and perturbation theory. In: Sáenz, A.W., Zachary, W.W., Cawley, R. (eds) Local and Global Methods of Nonlinear Dynamics. Lecture Notes in Physics, vol 252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0018331

Download citation

  • DOI: https://doi.org/10.1007/BFb0018331

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16485-2

  • Online ISBN: 978-3-540-39824-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics