Skip to main content

KAM Today

  • Conference paper
  • First Online:
Local and Global Methods of Nonlinear Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 252))

  • 147 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Arnold, “Small denominators and problems of stability of motion in classical and celestial mechanics,” Russ. Math Surv. 18, 85–193 (1963).

    Google Scholar 

  2. V. I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics (Benjamin, 1968).

    Google Scholar 

  3. R. B. Barrar, “Convergence of the von Zeipel procedure,” Celestial Mechanics 2, 494–504 (1970).

    Google Scholar 

  4. R. B. Barrar, “A Proof of the convergence of the Poincaré — Von Zeipel procedure in celestial mechanics, Am. J. Math. 88, 206–220 (1966).

    Google Scholar 

  5. C. E. Delaunay, Mem. Acad. Sci. Paris 28, 29 (entire volumes), 1860–1867.

    Google Scholar 

  6. D. F. Escande and F. Doveil, “Renormalization method for the onset of stochasticity in a Hamiltonian system”, Phys. Lett. 83A, 307–310 (1981).

    Google Scholar 

  7. D. F. Escande and F. Doviel, “Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems,” Stat. Phys. 26, 257–283 (1981).

    Google Scholar 

  8. H. Hagihara, Celestial Mechanics, Vol. II, Part 1 (MIT Press, 1972).

    Google Scholar 

  9. M. Hénon and C. Heiles, “The applicability of the third integral of motion: Some numerical experiments,” Astron. J. 69, 73–79 (1964).

    Google Scholar 

  10. A. N. Kolmogorov, “The conservation of conditionally periodic motions with a small change in the Hamiltonian,” Dokl. Akad. Nauk SSSR 98, 527–530 (1954).

    Google Scholar 

  11. J. Moser, “A rapidly convergent iteration method and nonlinear differential equations: II, “Ann. Scuola Norm. Sup. Pisa 20, 499–533 (1966).

    Google Scholar 

  12. J. Moser, “On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen, 1 (1962).

    Google Scholar 

  13. H. C. Plummer, An Introductory Treatise on Dynamical Astronomy (Dover, New York, 1960).

    Google Scholar 

  14. H. Poincaré, Leçons de mécanique Céleste, Vol. 1 (Gauthiers-Villars, Paris, 1905).

    Google Scholar 

  15. F. Riesz and B. Sz-Nagy, Functional Analysis (Frederick Ungar, New York, 1955).

    Google Scholar 

  16. W. M. Smart, Celestial Mechanics (Longmans, Green, New York, 1953).

    Google Scholar 

  17. Aurel Wintner, The Analytical Foundations of Celestial Mechanics (Princeton University Press, 1941).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. W. Sáenz W. W. Zachary R. Cawley

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Barrar, R. (1984). KAM Today. In: Sáenz, A.W., Zachary, W.W., Cawley, R. (eds) Local and Global Methods of Nonlinear Dynamics. Lecture Notes in Physics, vol 252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0018327

Download citation

  • DOI: https://doi.org/10.1007/BFb0018327

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16485-2

  • Online ISBN: 978-3-540-39824-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics