Advertisement

Wake fields measurements

  • Luigi Palumbo
  • Vittorio G. Vaccaro
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 343)

Keywords

Frequency Shift Bunch Length Coupling Impedance Resistive Wall Resistive Impedance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Palumbo, V.G. Vaccaro,“Wake Fields, Impedances and Green's Function”, CAS 1985 Advanced Accelerator Physics School Proceedings, S. Turner Editor, CERN 87-03, (1987).Google Scholar
  2. [2]
    A.W. Chao, “Coherent Instabilities of a Relativistic Bunched Beam”, SLAC-PUB 2946, (1982).Google Scholar
  3. [3]
    P.B. Wilson, “High Energy Electron Linacs: Application to Storage Ring RF Systems and Linear Colliders”, SLAC-PUB-2884, (1982).Google Scholar
  4. [4]
    K. Bane, P.B. Wilson, T. Weiland, “Wake Fields and Wake Field Acceleration” SLAC-PUB 3528, (1984).Google Scholar
  5. [5]
    B. Zotter, F. Sacherer and A. Hofmann in “Theorethical Aspects of the Behaviour of Beams in Accelerators and Storage Rings“, M.H. Blewett Editor CERN 77-13, (1977).Google Scholar
  6. [6]
    J.L. Laclare, “Introdution to Coherent Instabilities — Coasting Beam Case”, CAS 1984 General Accelerator Physics School Proceedings, P. Bryant and S. Turner Editors CERN 85-19, (1985).Google Scholar
  7. [7]
    B. Zotter, “Collective Effects — General Description”, ibidem.Google Scholar
  8. [8]
    J.L. Laclare, “Bunched Beam Coherent Instabilities”, in CAS 1985 Advanced Accelerator Physics School Proceedings, S. Turner Editor, CERN 87-03, (1987).Google Scholar
  9. [9]
    J.M. Wang, “Modes of Storage Ring Coherent Instabilities”, 1985 U.S. Particle Accelerator School Proceedings, SLAC, Stanford, M.Month Editor.Google Scholar
  10. [10]
    H. Figueroa et al., “Direct Measurement of Beam-Induced Fields in Accelerating Structures”, Physical Review Letters, Vol.60, N. 21, p.2144, (1988).Google Scholar
  11. [11]
    J.C. Slater, “Microwave Electronics”, D.Van Nostrand Company, (1950).Google Scholar
  12. [12]
    L.C. Maier, J.C. Slater, “Field Strength Measurements in Resonant Cavities”, Journal of Applied Physics, Vol.23, p.68, (1952).Google Scholar
  13. [13]
    R.F. Harrington, “Time Harmonic Electromagnetic Fields”, Mc Graw-Hill Book Company, (1961).Google Scholar
  14. [14]
    Y. Yamazaky, K. Takata, S. Tokumoto, “Measurement of the Longitudinal and Transverse Coupling Impedance of the HOM of the Re-entrant Accelerating Cavity” KEK 80-8, (1980).Google Scholar
  15. [15]
    F. Caspers, G. Dome, “Precise Perturbation Field Measurements of Resonant Cavities Higher Order Mode Identification” CERN, SPS/85-46, (1985).Google Scholar
  16. [16]
    D. Tong, “A New Type of Perturbing Object for High Order Mode Measurements in a Resonant Cavity” DESY M-87-06, (1987).Google Scholar
  17. [17]
    W. Barry, G.R. Lambertson, “Perturbation Method for the Measurement of Longitudinal and Transverse Beam Impedance” LBL-22212, (1987).Google Scholar
  18. [18]
    M. Sands, J. Rees, “A Bench Measurement of the Energy Loss of a Stored Beam to a Cavity”, PEP-95, (1974).Google Scholar
  19. [19]
    J. Peters, “Bench Measurement of the Energy Loss of a Stored Beam to Vacuum Components”, IEEE Trans. NS-24, No.3, p.1446, (1977).Google Scholar
  20. [20]
    P.B. Wilson, J.B. Styles, K.L.F. Bane, “Comparison of Measured and Computed Loss to Parasitic Modes in Cylindrical Cavities with Beam Ports”, SLAC-PUB-1908, (1977).Google Scholar
  21. [21]
    H. Hahn, F. Pedersen, “On Coaxial Wire Measurements of the Longitudinal Coupling Impedance”, BNL 50870, UC-28, (1978).Google Scholar
  22. [22]
    F. Caspers, “Beam Impedance Measurement by the Wire Method Using a Synthetic Pulse Technique”, IEEE, NS-32, p. 1914, (1985).Google Scholar
  23. [23]
    G. Lambertson, “Interpretation of the Wire Method of Measuring Beam Impedance below Cutoff”, unpublished, (1987).Google Scholar
  24. [24]
    A. Hofmann, J.R. Maidment, “Current Dependent Phenomena in LEP”, LEP Note 168.Google Scholar
  25. [25]
    K. Hubner, J. Jowett, S. Myers, LEP note 316, (1979).Google Scholar
  26. [26]
    A. Hofmann, B. Zotter, “Improved Impedance Models for High Energy Accelerators and Storage Rings”, CERN LEP/TH 88-51,(1988).Google Scholar
  27. [27]
    A. Hofmann, 1987 CERN Academic Training Program,, Unpublished.Google Scholar
  28. [28]
    L. Rivkin et al., “Accelerator Physics Measurements at the Damping Ring”, Proceedings of the Particle Accelerator Conference, Vancouver, IEEE NS-32, N.5, p.2626, (1985).Google Scholar
  29. [29]
    S. Hansen et al., “ Effects of Space Charge and Reactive Wall Impedance on Bunched Beams ”, CERN/ISR-RF-DI-TH-OP/75-15 (1975) and IEEE Trans. NS-22, No.3, p.1381, (1975).Google Scholar
  30. [30]
    F. Sacherer,“Methods for Computing Bunched-Beam 'instabilities”, CERN SIBR/72-5, (1972).Google Scholar
  31. [31]
    F. Sacherer, “Bunch Lengthening and Microwave Instability”, IEEE Trans. NS-24, No.3, p.1393, (1981).Google Scholar
  32. [32]
    B. Zotter, “Turbulent Bunch Lengthening and Microwave Instability“, IEEE trans. NS-28, No.3, (1981), p.2602.Google Scholar
  33. [33]
    D. Boussard, CERN/LAB II/ RF/ 75-2, (1975).Google Scholar
  34. [34]
    E. Keil, W. Schnell, “Concerning Longitudinal Stability in the ISR”, CERN/ISR/TH/RF/ 69-48, (1969).Google Scholar
  35. [35]
    J.C. Denard et al. “Collective Effects on DCI”, IEEE Trans., NS-28, No.3, p.2474, (1981).Google Scholar
  36. [36]
    M. Bassetti et al. “Bunch Length Measurements at ADONE“, EPAC Conference, Rome 1988, to be published.Google Scholar
  37. [37]
    S. Bartalucci and K. Hubner, “Measurement of EPA Bunch Length“, PS/LPI Note 87-05, (1987).Google Scholar
  38. [38]
    M.A. Allen et al., “Some Observation on Bunch Lengthening at SPEAR”, Proceedings IXth Int. Conf. HEA, Stanford, p.352, (1974).Google Scholar
  39. [39]
    L. Rivkin et al. “ Bunch Lengthening in the SLC Damping Ring”, SLAC-PUB-4645, (1988).Google Scholar
  40. [40]
    D. Boussard, J. Gareyte, “Measurements of the SPS Coupling Impedance“, SPS/AC/DB/JG/EEK 181, (1980).Google Scholar
  41. [41]
    P. Bramham et al. “Longitudinal Instabilities of Bunched Beams in the ISR”, IEEE Trans. NS-24, No.3, p.1490, (1977).Google Scholar
  42. [42]
    A.W. Chao and J. Gareyte, “Scaling Law for Bunch Lengthening in SPEAR II”, SPEAR-197/PEP-224, SLAC, (1976).Google Scholar
  43. [43]
    P.B. Wilson et al. “Bunch Lengthening and Related Effects in SPEAR II”, IEEE Trans. NS-24, No.3, p.1211, (1977).Google Scholar
  44. [44]
    A. Hofmann, T. Risselada, “Measuring the ISR Impedance at Very High Frequencies by Observing the Energy Loss of a Coasting Beam”, IEEE Trans. NS-30, No.4, p.2400, (1983).Google Scholar
  45. [45]
    A. Hofmann et al. “The ISR Impedance Between 40 kHz and 40 GHz”, IEEE Trans. NS-32, No.5, p.2212, (1985).Google Scholar
  46. [46]
    A. Hofmann, private communication.Google Scholar
  47. [47]
    C. Pellegrini, “On a New Instability in Electron Positron Storage Rings: the head-tail effect”, LNF 69/45, Frascati, (1969).Google Scholar
  48. [48]
    M. Sands, “The Head-Tail Effect, an Instability Mechanism in Storage Rings”, SLAC-TN-69-8, (1969).Google Scholar
  49. [49]
    F. J. Sacherer, “Transverse Bunched Beams Instability”, Proc. IX Int. Conf. on HEA, (1974).Google Scholar
  50. [50]
    J. Gareyte, F. Sacherer, “Head-Tail Type Instabilities in the CERN PS and Booster”, IEEE Trans., Proc. IX Int. Conf. on HEA, (1974).Google Scholar
  51. [51]
    B. Zotter, “Transverse Mode Coupling and Head-Tail Turbulence”, CERN/ISR-TH/82-10, (1982).Google Scholar
  52. [52]
    M.P. Level et al. “Transverse Mode Coupling Experiment at DCI”, LAL/RT/84-09, (1984).Google Scholar
  53. [53]
    D. Brandt, J.P. Delahaye, A. Hofmann “ Transverse Mode Measurement with positrons in EPA”, LEP Note 595 and note PS/LP/87-35, (1987).Google Scholar
  54. [54]
    L.J. Laslett, 1963 Study on Storage Rings, BNL Report-7534, (1963).Google Scholar
  55. [55]
    B. Zotter, CERN Reports ISR-TH/72-8, ISR-TH/74-11 and ISR-TH/74-38.Google Scholar
  56. [56]
    P. Bryant, “Betatron Frequency Shift due to Self Image Fields”, CAS 1986 Second General Accelerator Physics Course Proceedings, S. Turner Editor, CERN 87-10, (1987).Google Scholar
  57. [57]
    M. Serio, “ Betatron Tune Measurements”, These Proceedings.Google Scholar
  58. [58]
    D. Mohl, A.M. Sessler, “The Use of RF-Knock-out for Determination of the Characteristics of the Transverse Coherent Instability of an Intense Beam”, Proc. IIX Int. Conference, CERN, p. 334, (1971).Google Scholar
  59. [59]
    A. Hofmann, B. Zotter, “Measurement of Beam Stability and Coupling Impedance by RF Excitation”, IEEE Trans., NS-24, No.3, p.1487, (1977).Google Scholar
  60. [60]
    J. Borer et al. “Information from Beam Response to Longitudinal and Transverse Excitation”, IEEE Trans., NS-26, No.3, p.1487, (1977).Google Scholar
  61. [61]
    J.Y. Hemery, L. Vos, “A procedure for Obtaining Transverse Wall Impedance and Working Line from Transfer Function Measurements”, CERN-ISR-CO-OP/80-32, (1980).Google Scholar
  62. [62]
    K. Bane and P.B. Wilson, IEEE Trans. NS-24, p.1485 (1977).Google Scholar
  63. [63]
    T. Weiland and B. Zotter “Wake Potentials of a Relativistic Current in a Cavity“, Particle Accelerators, Vol.11, p.143, (1981).Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Luigi Palumbo
    • 1
  • Vittorio G. Vaccaro
    • 2
  1. 1.Dip. EnergeticaItaly
  2. 2.Dip. FisicaUniversita' degli studi di Napoli and INFN Sezione di NapoliItaly

Personalised recommendations