Advertisement

Polarization in large e+/e storage rings

  • M. Placidi
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 343)

Abstract

After a general reminder of the nature of polarization phenomena in high energy storage rings, the course reviews the laws governing the spin motion in magnetic fields and the origin of depolarizing mechanisms; a description of simple spin rotators is given as an application of the spin precession laws. The principles of operation of laser polarimeters are discussed and optimization criteria are introduced. Finally, the application of polarimetry to the calibration of accelerator parameters and particle resonances completes the review.

Keywords

Storage Ring Spin Rotator Spin Motion Spin Precession Polarization Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B.W. Montague, Physics Reports Vol. 113 No. 1 (Nov. 1984).Google Scholar
  2. [2]
    G. Alexander et al., (Ed.), POLARIZATION AT LEP, CERN 88-06 (Sept. 1988).Google Scholar
  3. [3]
    A.A. Sokolov and I.M. Temov, Soy. Phys. Dokl. 8 (1964) 1203.Google Scholar
  4. [4]
    J.M. Paterson, J.R. Rees and H. Wiedemann, SPEAR-186 and PEP 125 (1975).Google Scholar
  5. [5]
    J.M. Jowett, and T.M. Taylor, IEEE Trans. NS-30 (1983).Google Scholar
  6. [6]
    A. Blondcl, J.M. Jowett, LEP Note 606 (May 1988).Google Scholar
  7. [7]
    L.H. Thomas, Phil. Mag. 3 (1927).Google Scholar
  8. [8]
    V. Bargmann, L. Michel, V.L. Telegdi, Phys. Rev. Lett. 2 (1959).Google Scholar
  9. [9]
    A.W. Chao, Nucl. Instr. Meth. 180 (1981) 29.Google Scholar
  10. [10]
    S. Mane, Proc. Conf. on H.E. Spin Physics Minneapolis (1988).Google Scholar
  11. [11]
    K. Yokoya, P. Chen, SLAC-PUB-4692 (Sept. 1988).Google Scholar
  12. [12]
    D.P. Barber et al., DESY 82-076 (1982).Google Scholar
  13. [13]
    R. Rossmanith, R. Schmidt, DESY 84105 (1984).Google Scholar
  14. [14]
    J.P. Koutchouk, T. Limberg, in Ref[2], p.204.Google Scholar
  15. [15]
    Ya. Derbenev, A.M. Kondratenko and A.N. Skrinsky, Sov. Phys. Doklady 15 (1970).Google Scholar
  16. [16]
    T. Fieguth, SLAC/AP-52 (April 1986).Google Scholar
  17. [17]
    R. Schwitters, B. Richter, SLAC Technical Note PEP-87 and SPEAR Note 175 (1974).Google Scholar
  18. [18]
    A. Blondel, In Ref.[4], Vol.2, p.250 (1975).Google Scholar
  19. [19]
    J. Buon, LAL-RT 88-02 (Feb. 1988).Google Scholar
  20. [20]
    V.N. Baier, V.A. Khoze, Sov. J. Nucl. Phys. 9 (1969) 238.Google Scholar
  21. [21]
    D.B. Gustavson et al., Nucl. Instr. Meth. 165 (1979) 177.Google Scholar
  22. [22]
    F.W. Lipps, H.A. Tolhoek, Physica XX (1954) p.85 and p. 395.Google Scholar
  23. [23]
    G. Barbagli, INFN Florence, Italy, private communication.Google Scholar
  24. [24]
    M. Placidi, R. Rossmanith, Nucl. Instr. Meth. A274 (1989) 79–94.Google Scholar
  25. [25]
    E. Locci, LEP Note 617 (Dec. 1988).Google Scholar
  26. [26]
    Y. Derbenev et al., Particle Accelerators 18 (1980).Google Scholar
  27. [27]
    R.S. Van Dyck Jr. et al. Phys. Rev. Letters 59 (1987) 26.Google Scholar
  28. [28]
    D.B. Barber et al., Physics Letters 135B (1984) 498.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. Placidi
    • 1
  1. 1.CERNGenevaSwitzerland

Personalised recommendations