Skip to main content

Effective free energy for nonlinear dynamics

  • Conference paper
  • First Online:
Recent Progress in Many-Body Theories

Part of the book series: Lecture Notes in Physics ((LNP,volume 142))

  • 114 Accesses

Abstract

Nonlinear dissipative systems often become dynamically unstable at critical values of a control parameter h. For h<hc, all normal modes of the linearized theory decay, whereas, when h exceeds hc, linearized modes with wavenumbers near a nonzero critical value qç grow exponentially with time. A nonlinear analysis of the original free energy yields an effective renormalized free energy for the slowly varying envelope function that modulates the plane wave exp(iqç·x). For several cases of interest in connection with superfluid 3 He-A, the sign of the resulting quartic coupling produces catastrophic growth, indicating a failure of the small amplitude perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford, 1961), Chaps. II and VII.

    Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959), Chap. III.

    Google Scholar 

  3. D. D. Joseph, Stability of Fluid Motion (Springer-Verlag, Berlin, 1976), Chaps. V and XI.

    Google Scholar 

  4. C. Normand, Y. Pomeau, and M. G. Velarde, Rev. Mod. Phys. 49, 581 (1977).

    Google Scholar 

  5. F. H. Busse, Rep. Frog. Phys. 41, 1929 (1978).

    Google Scholar 

  6. G. Ahlers, in Fluctuations, Instabilities, and Phase Transitions, edited by T. Riste (Plenum, New York, 1975), p. 181.

    Google Scholar 

  7. D. Coles, J. Fluid Mech. 21, 385 (1965).

    Google Scholar 

  8. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).

    Google Scholar 

  9. H. Goldstein, Classical Mechanics (Addison-Wesley,, Reading, MA, 1950), pp. 21–22.

    Google Scholar 

  10. A. L. Fetter and J. D. Walecka, Theoretical Mechanics of Particles and Continua (McGraw-Hill, New York, 1980), Sec. 22.

    Google Scholar 

  11. A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38, 279 (1969).

    Google Scholar 

  12. L. A. Segel, J. Fluid Mech. 38, 203 (1969).

    Google Scholar 

  13. E. Coutsias and B. A. Huberman, to be published.

    Google Scholar 

  14. A. L. Fetter and M. R. Williams, Phys. Rev. Lett. 43, 1601 (1979), and Phys. Rev. B, to be published.

    Google Scholar 

  15. Y. R. Lin-Liu, D. Vollhardt, and K. Maki, Phys. Rev. B20, 159 (1979).

    Google Scholar 

  16. A. L. Fetter, to be published.

    Google Scholar 

  17. M. C. Cross, Phys. Fluids 23, 1727 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. G. Zabolitzky M. de Llano M. Fortes J. W. Clark

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Fetter, A.L. (1981). Effective free energy for nonlinear dynamics. In: Zabolitzky, J.G., de Llano, M., Fortes, M., Clark, J.W. (eds) Recent Progress in Many-Body Theories. Lecture Notes in Physics, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0018164

Download citation

  • DOI: https://doi.org/10.1007/BFb0018164

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10710-1

  • Online ISBN: 978-3-540-38677-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics