Skip to main content

Part of the book series: Structure and Bonding ((STRUCTURE,volume 87))

Abstract

Metallaboranes are true hybrid cluster systems that empirically join the polyhedral boranes with transition metal clusters. Although metallaborane chemistry, and metallacarborane chemistry, initially developed as a variation of metal-ligand coordination chemistry analogous to organometallic chemistry, it was the cluster electron counting rules and the associated isolobal principle that revealed interconnections between ostensibly unrelated molecules and defined the scope of the area. The subsequent synthetic developments, both rationalized and stimulated by these ideas, provide a convincing verification of the intrinsic chemical truths expressed by these rules. The variability in the isolobal behavior of a given metal fragment makes the chemistry associated with metallaboranes considerably richer than that of pure boranes or pure metal clusters of the same dimension. Consequently, metallaboranes require careful analysis of the connection between geometry and electronic structure. In this regard, the emerging metallaborane chemistry of the early transition metals provides interesting variations on the theme of cluster electron counting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fehlner TP (1992) Inorganometallic chemistry. Plenum, New York

    Google Scholar 

  2. Elschenbroich C, Salzer A (1989) Organometallics. VCH, New York

    Google Scholar 

  3. Housecroft CE, Fehlner TP (1982) Adv Organomet Chem 21:57

    Google Scholar 

  4. Housecroft CE (1992) In: Fehlner TP (ed) Inorganometallic chemistry. Plenum, New York, p73

    Google Scholar 

  5. Kennedy JD (1984) Prog Inorg Chem 32:519

    Google Scholar 

  6. Kennedy JD, (1986) Prog. in Inorg. Chem. 34:211

    Google Scholar 

  7. Grimes RN, (1982) Pure & Appl. Chem. 54:43

    Google Scholar 

  8. Grimes RN (1982) In: Grimes RN (ed) Metal interactions with boron clusters. Plenum, New York, p269

    Google Scholar 

  9. Hawthorne MF (1975) J Organomet Chem 100:97

    Google Scholar 

  10. Hawthorne MF (1972) Pure Appl Chem 29:547

    Google Scholar 

  11. Fehlner TP (1990) Adv Inorg Chem 35:199

    Google Scholar 

  12. Williams RE (1971) Inorg Chem 10:210

    Google Scholar 

  13. Wade K (1972) Inorg Nucl Chem Lett 8:559

    Google Scholar 

  14. Rudolph RW (1976) Acc Chem Res 9:446

    Google Scholar 

  15. Mingos DMP (1972) Nature (London) Phys Sci 236:99

    Google Scholar 

  16. Hoffmann R (1981) Science 211:995

    Google Scholar 

  17. Campagna S, Giannetto A, Serroni S, Denti G, Trusso S, Mallamace F, Micali N (1995) J Am Chem Soc 117:1754

    Google Scholar 

  18. Park JW, Mackenzie PB, Schaefer WP, Grubbs RH (1986) J Am Chem Soc 108:6402

    Google Scholar 

  19. Jones WD, Feher FJ (1986) J Am Chem Soc 108:4814

    Google Scholar 

  20. Graham WAG (1986) J Organomet Chem 300:81–91

    Google Scholar 

  21. Bergman RG, Seidler PF, Wenzel TT (1985) J Am Chem Soc 107:4358

    Google Scholar 

  22. Crabtree RH, Holt EM, Lavin M, Morehouse SM (1985) Inorg Chem 24:1986

    Google Scholar 

  23. Hoyano JK, McMaster AD, Graham WAG (1983) J Am Chem Soc 105:7190

    Google Scholar 

  24. James BD, Wallbridge NIGH (1970) Prog Inorg Chem 11:99

    Google Scholar 

  25. Marks TJ, Kolb JR (1977) Chem Rev 77:263

    Google Scholar 

  26. Gaines DF, Hildebrandt SJ (1978) Inorg Chem 17:794

    Google Scholar 

  27. Hildebrandt SJ, Gaines DF, Calcbrese JC (1978) Inorg Chem 17:790

    Google Scholar 

  28. Calcbrese JC, Fischer MB, Gaines DF, Lott JW (1974) J Am Chem Soc 96:6318

    Google Scholar 

  29. Baker RT et al. (1984) J Am Chem Soc 106:2965–3025

    Google Scholar 

  30. Behnken PE, Hawthorne MF (1984) Inorg Chem 23:3420

    Google Scholar 

  31. Behnken PE et al. (1984) J Am Chem Soc 106:7444

    Google Scholar 

  32. Belmont JA, Soto J, King RE III, Donaldson AJ, Hewes JD, Hawthorne MF (1989) J Am Chem Soc 111:7475

    Google Scholar 

  33. Jeffery JC, Jelliss PA, Stone FGA (1994) Organometallics 13:2651

    Google Scholar 

  34. Snow SA, Shimoi M, Ostler CD, Thompson BK, Kodama G, Parry RW (1984) Inorg Chem 23:511

    Google Scholar 

  35. Shimoi M, Katoh K, Ogino H (1990) J Chem Soc Chem Commun 811

    Google Scholar 

  36. Katoh K, Shimoi M, Ogino H (1992) Inorg Chem 31:670

    Google Scholar 

  37. Aldridge S, Blake AJ, Downs AJ, Parsons S (1995) J CS Chem Commun 1363

    Google Scholar 

  38. Ivanov SV, Lupinetti AJ, Miller SM, Anderson OP, Solntsev KA, Strauss SH (1995) Inorg Chem 34:6419

    Google Scholar 

  39. Greenwood NN, Ward IM (1974) Chem Soc Rev 3:231

    Google Scholar 

  40. Hawthorne MF, Young DC, Wegner PA (1965) J Am Chem Soc 87:1818

    Google Scholar 

  41. Siebert W (1981) In: Müller A, Diemann E (eds) Transition metal chemistry. Verlag Chemie, Deerfield Beach, Florida p158

    Google Scholar 

  42. Siebert W (1985) Z Naturforsch B:Anorg Chem Org Chem 40B:458

    Google Scholar 

  43. Grimes RN (1992) Chem Rev 92:251

    Google Scholar 

  44. Hawthorne MF, Dunks GB (1972) Science 178:462

    Google Scholar 

  45. Warren LF Jr, Hawthorne MF (1970) J Am Chem Soc 92:1157

    Google Scholar 

  46. Wang X, Sabat M, Grimes RN (1995) J Am Chem Soc 117:12227

    Google Scholar 

  47. Crowther DJ, Borkowsky SL, Swenson D, Meyer TY, Jordan RF (1993) Organometallics 12:2897

    Google Scholar 

  48. Stockman KE, Sabat M, Finn MG, Grimes RN (1992) J Am Chem Soc 114:8733

    Google Scholar 

  49. Grimes RN (1979) Coordination Chemistry Reviews 28:47

    Google Scholar 

  50. Coffy TJ, Medford G, Plotkin J, Long GJ, Huffman JC, Shore SG (1989) Organometallics 8:2404

    Google Scholar 

  51. DeKock RL, Deshmukh P, Fehlner TP, Housecroft CE, Plotkin JS, Shore SG (1983) J Am Chem Soc 105:815

    Google Scholar 

  52. Aradi AA, Fehlner TP (1990) Adv Organomet Chem 30:189

    Google Scholar 

  53. Jan D-Y, Hsu L-Y, Workman DP, Shore SG (1987) Organometallics 6:1984

    Google Scholar 

  54. Jan D-Y, Shore SG (1987) Organometallics 6:428

    Google Scholar 

  55. Jan D-Y, Workman DP, Hsu L-Y, Krause JA, Shore SG (1992) Inorg Chem 31:5123

    Google Scholar 

  56. Fehlner TP (1995) In: Farrugia LJ (ed) The synergy between dynamics and reactivity at clusters and surfaces. Kluwer Academic, Dordrecht, p75

    Google Scholar 

  57. Dutta TK, Vites JV, Jacobsen GB, Fehlner TP (1987) Organometallics 6:842

    Google Scholar 

  58. Lynam MM, Chipman DM, Barreto RD, Fehlner TP (1987) Organometallics 6:2405

    Google Scholar 

  59. Vites JC, Eigenbrot C, Fehlner TP (1984) J Am Chem Soc 106:4633

    Google Scholar 

  60. Vites JC, Housecroft CE, Jacobsen GB, Fehlner TP (1984) Organometallics 3:1591

    Google Scholar 

  61. Vites JC, Housecroft CE, Eigenbrot C, Buhl ML, Long GJ, Fehlner TP (1986) J Am Chem Soc 108:3304

    Google Scholar 

  62. Fehlner TP (1990) Polyhedron 9:1955

    Google Scholar 

  63. Barreto RD, Puga J, Fehlner TP (1990) Organometallics 9:662

    Google Scholar 

  64. Shore SG (1975) In: Muetterties EL (ed.) Boron hydride chemistry. Academic Press, New York, p79

    Google Scholar 

  65. Williams RE (1976) Adv Inorg Chem & Radiochem 18:67

    Google Scholar 

  66. Moore EJ, Sullivan JM, Norton JR (1986) J Am Chem Soc 108:2257

    Google Scholar 

  67. Walker HW, Pearson RG, Ford PC (1983) J Am Chem Soc 105:1179

    Google Scholar 

  68. Kristjánsdóttir SS, Moody AE, Weberg RT, Norton JR (1988) Organometallics 7:1983

    Google Scholar 

  69. Weberg RT, Norton JR (1990) J Am Chem Soc 112:1105

    Google Scholar 

  70. Jun C-S, Fehlner TP (1994) Organometallics 13:2145

    Google Scholar 

  71. Jun C-S, Halet J-F, Rheingold AL, Fehlner TP (1995) Inorg Chem 34:2101

    Google Scholar 

  72. Jun C-S, Bandyopadhyay AK, Fehlner TP (1996) Inorg Chem 35:2189

    Google Scholar 

  73. Wade K (1974) New Scientist 62:615

    Google Scholar 

  74. Wade K (1976) Adv Inorg Chem & Radiochem 18:1

    Google Scholar 

  75. Mingos DMP (1984) Acc Chem Res 17:311–319

    Google Scholar 

  76. Mingos DMP, Johnston RL (1987) Structure and Bonding 68:29

    Google Scholar 

  77. Mingos DMP, Wales DJ (1990) Introduction to cluster chemistry. Prentice Hall, New York

    Google Scholar 

  78. Venable TL, Sinn E, Grimes RN (1984) J Chem Soc, Dalton Trans 2275

    Google Scholar 

  79. Weiss R, Bowser JR, Grimes RN (1978) Inorg Chem 17:1522

    Google Scholar 

  80. Housecroft CE, Fehlner TP (1982) Inorg Chem 21:1739

    Google Scholar 

  81. Meng X, Fehlner TP, Rheingold AL (1990) Organometallics 9:534

    Google Scholar 

  82. Pipal JR, Grimes RN (1977) Inorg Chem 16:3255

    Google Scholar 

  83. Khattar R, Puga J, Fehlner TP, Rheingold AL (1989) J Am Chem Soc 111:1877

    Google Scholar 

  84. Bandyopadhyay AK, Khattar R, Fehlner TP (1989) Inorg Chem 28:4434

    Google Scholar 

  85. Bandyopadhyay AK, Khattar R, Puga J, Fehlner TP, Rheingold AL (1992) Inorg Chem 31:465

    Google Scholar 

  86. Lipscomb WN (1963) Boron hydrides. Benjamin, New York

    Google Scholar 

  87. Greenwood NN, Savory CG, Grimes RN, Sneddon LG, Davison A, Wreford SS (1974) JCS Chem Comm 718

    Google Scholar 

  88. Miller VR, Weiss R, Grimes RN (1977) J Am Chem Soc 99:5646

    Google Scholar 

  89. Andersen EL, Haller KJ, Fehlner TP (1979) J Am Chem Soc 101:4390

    Google Scholar 

  90. Nishihara Y, Deck KJ, Shang M, Fehlner TP, Haggerty BS, Rheingold AL (1994) Organometallics 13:4510

    Google Scholar 

  91. Bould J, Pasieka M, Braddock-Wilking J, Rath NP, Barton L, Gloeckner C (1995) Organometallics 14:5138

    Google Scholar 

  92. Chipperfield AK, Housecroft CE, Matthews DM (1990) J Organomet Chem 384:C38

    Google Scholar 

  93. Housecroft CE, Matthews DM, Rheingold AL (1992) JCS Chem Comm 323

    Google Scholar 

  94. Shriver DF, Kaesz HD, Adams RD (1990) The chemistry of metal cluster complexes. VCH, New York

    Google Scholar 

  95. Feilong J, Fehlner TP, Rheingold AL (1987) J Am Chem Soc 109:1860

    Google Scholar 

  96. Pipal JR, Grimes RN (1979) Inorg Chem 18:252

    Google Scholar 

  97. O'Neill ME, Wade K (1982) Inorg Chem 21:461

    Google Scholar 

  98. Cox DN, Mingos DMP, Hoffmann R (1981) J Chem Soc, Dalton Trans 1788

    Google Scholar 

  99. Fowkes H, Greenwood NN, Kennedy JD, Thornton-Pett M (1986) J Chem Soc, Dalton Trans 517

    Google Scholar 

  100. Halet J-F, Hoffmann R, Saillard J-Y (1985) Inorg Chem 24:1695

    Google Scholar 

  101. Vahrenkamp H, Walter D (1982) Organometallics 1:874

    Google Scholar 

  102. Pipal JR, Grimes RN (1979) Inorg Chem 18:257

    Google Scholar 

  103. Bowser JR, Grimes RN (1978) J Am Chem Soc 100:4623

    Google Scholar 

  104. Bowser JR, Bonny A, Pipal JR, Grimes RN (1979) J Am Chem Soc 101:6229

    Google Scholar 

  105. Jun CS, Fehlner TP, Rheingold AL (1993) J Am Chem Soc 115:4393

    Google Scholar 

  106. Bould J, Greenwood NN, Kennedy JD, McDonald WS (1982) J Chem Soc Chem Commun 465

    Google Scholar 

  107. Kennedy JD (1986) Inorg Chem 25:11

    Google Scholar 

  108. Baker RT (1986) Inorg Chem 25:109

    Google Scholar 

  109. Johnson RL, Mingos DMP (1986) Inorg Chem 25:3321

    Google Scholar 

  110. Mingos DMP (1982) Inorg Chem 21:464

    Google Scholar 

  111. Chisholm MC, Clark DL, Hampden-Smith MJ, Hoffman DH (1989) Angew Chem Int Ed Engl 28:432

    Google Scholar 

  112. Mingos DMP (1985) J Chem Soc, Chem Commun 1352

    Google Scholar 

  113. Halet J-F, Saillard J-Y (1987) New J Chem 11:315

    Google Scholar 

  114. Kvietok FA, Bursten BE (1994) J Am Chem Soc 116:9807

    Google Scholar 

  115. Deck KJ, Nishihara Y, Shang M, Fehlner TP (1994) J Am Chem Soc 116:8408

    Google Scholar 

  116. Ho J, Deck KJ, Nishihara Y, Shang M, Fehlner TP (1995) J Am Chem Soc 117:10292

    Google Scholar 

  117. Maynard RB, Wang Z-T, Sinn E, Grimes RN (1983) Inorg Chem 22:873

    Google Scholar 

  118. Spencer JT, Grimes RN (1987) Organometallics 6:323,328,335

    Google Scholar 

  119. Oki A. et al. (1992) Organometallics 11:4202

    Google Scholar 

  120. Heintz RA, Haggerty BS, Wan H, Rheingold AL, Theopold KH (1992) Angew Chem Int Ed Engl 31:1077

    Google Scholar 

  121. Heintz RA, Ostrander RL, Rheingold AL, Theopold KH (1994) J Am Chem Soc 116:11387

    Google Scholar 

  122. Micciche RP, Carroll PJ, Sneddon LG (1985) Organometallics 4:1619

    Google Scholar 

  123. Knox SAR, Stansfield RFD, Stone FGA, Winter MJ, Woodward P (1982) J Chem Soc, Dalton Trans 173

    Google Scholar 

  124. Hashimoto H, Shang M, Fehlner TP (1996) Organometallics 15:1963

    Google Scholar 

  125. Hashimoto H, Shang M, Fehlner TP (1996) J Am Chem Soc 118:8164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

D. M. P. Mingos

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Verlag

About this chapter

Cite this chapter

Fehlner, T.P. (1997). Metallaboranes. In: Mingos, D.M.P. (eds) Structural and Electronic Paradigms in Cluster Chemistry. Structure and Bonding, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0018032

Download citation

  • DOI: https://doi.org/10.1007/BFb0018032

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62791-3

  • Online ISBN: 978-3-540-68689-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics