Skip to main content

Optical interferometry: Running crack-tip morphologies and craze material properties

  • Conference paper
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 91/92))

Abstract

Crazing is one of the most common fracture precursors in glassy polymers. The structure and properties of crazes are of major interest for polymer fracture. There now exist several powerful experimental techniques such as small angle X-ray scattering or electron microscopy to measure the properties of crazes in polymers, either in the case of isolated crazes or in that of crazes at a moving crack-tip. The previous chapter in this book gave an overview of the fundamentals of another experimental technique, namely optical interferometry, applied to the visualization of crazes. This technique is particularly suitable in some experimental conditions, for example, propagating single crazes. In this chapter, dealing only with optical interferometry, the material aspects of crazing at running crack-tips will be studied in a large variety of experimental propagation conditions, several materials, some loading conditions, emphasizing time-temperature effects and environmental effects. Quantitative and numerical analysis of the craze interference patterns are used to gain information on the inner craze structure and the properties of craze fibrils.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

Crack length

C:

Concentration (gas or liquid in polymers)

C0 :

equilibrium concentration

D″:

Mechanical dynamical loss factor

D:

Diffusion coefficient of a gas in polymers

da/dN:

Growth rate in a cyclic loading case

d0 :

Distance between particles in rubber toughened polymers

E:

Tensile modulus

E*:

Plain strain tensile modulus

H:

Enthalpy

K1 min :

Min value of K1 in a cyclic loading

K1 max :

Max value of K1 in a cyclic loading

δK1 :

K1 max − K1 min

K1 :

Stress intensity factor

K1(Vc):

Stress intensity factor for a crack propagating at velocity Vc

LAED:

Low Angle Electron Diffraction

N:

Number of cycles in a cyclic loading case

N0 :

Craze fibrils' life-time in cycles

n:

optical index

PMMA:

Polymethylmethacrylate

PVC:

Polyvinylchloride

PC:

Polycarbonate

PS:

Polystyrene

R:

K1 max/K1 min

R0 :

Craze fibril's radius

S:

Craze length

Sc :

Craze structural parameter

S(x):

Craze surface stress distribution

Sr(x):

Reduced craze surface stress distribution

SEM:

Scanning Electron Microscopy

TEM:

Transmission Electron Microscopy

T:

Temperature

Tc :

Critical temperature for craze bundling

Tg :

Glass transition temperature

Tβ :

Secondary transition temperature

T(x):

Geometrical craze thickness profile

T0(x):

Optical craze thickness profile

Tmax :

Craze thickness at crack tip

t:

Time

V*:

Activation volume

Ve :

Fibril extraction velocity

Vc :

Crack speed (da/dt)

vf :

Craze fibril volume fraction

α:

Primary relaxation process

β:

Secondary relaxation process

ε:

Strain

δT:

Temperature variation

τ0, τ:

Craze fibril life-time

σ:

Stress

σc :

Mean craze surface stress (S(x) constant)

σd :

Mean craze surface stress from Dugdale model (particular value of σc)

σr :

Mean reduced craze surface stress (Sr(x) constant)

1/σt :

normalized activation volume for τ0

1/σve :

normalized activation volume for Ve

1/σv :

normalized activation volume for Vc

Ω:

Frequency

π:

3.1416

6 References

  1. Brown N (1980) In: Methods of Experimental Physics, Academic, New York, vol 16c p 233

    Google Scholar 

  2. Brown HR, Kramer EJ (1981) J Macromol Sci — Phys B19: 487

    Article  CAS  Google Scholar 

  3. Mills PJ, Kramer EJ (1985) J Mater Sci 20: 4413

    Article  CAS  Google Scholar 

  4. Yang AC, Kramer EJ (1985) J Polym Sci Polym Phys Edn 23: 1353

    CAS  Google Scholar 

  5. Yang AC, Kramer EJ (1986) J. Mater Sci 21: 3601

    Article  CAS  Google Scholar 

  6. Koenczoel L, Schinker MG, Doell W (1983) In: Fatigue in polymers, Plastics and Rubber Institute, London, p 41

    Google Scholar 

  7. Schirrer R (1988) Unpublished results

    Google Scholar 

  8. Kambour RP (1966) J Polym Sci A2: 343

    Google Scholar 

  9. Gent AN (1970) J Mater Sci 5: 925

    Article  CAS  Google Scholar 

  10. Wool RP, O'Connors KM (1981) Polym Eng Sci 21: 970

    Article  CAS  Google Scholar 

  11. Schirrer R, Goett C (1980) Int J Fracture 16: R133

    Google Scholar 

  12. Schirrer R, Goett C (1981) J Mater Sci 16: 2563

    Article  CAS  Google Scholar 

  13. Schirrer R, Goett C (1982) J Mater Sci Letters 1: 355

    Article  CAS  Google Scholar 

  14. Hertzberg RW, Manson JA (1980) In: Fatigue of engineering plastics, Academic, New York

    Google Scholar 

  15. Schirrer R, Le Masson J, Tomatis B, Lang R (1984) Polym Eng Sci 24: 820

    Article  CAS  Google Scholar 

  16. Lang R, Manson JA, Hertzberg R, Schirrer R (1984) Polym Eng Sci 24: 833

    Article  CAS  Google Scholar 

  17. Donald AM, Kramer HEJ (1981) Phil Mag A, 43: 857

    Article  CAS  Google Scholar 

  18. Verheulpen-Heymans N (1979) In: Proceedings of “Deformation, yield and fracture of polymers”, Cambridge UK, The Plastic and Rubbar Inst., London (1987)

    Google Scholar 

  19. Kausch HH (1987) In: Polymer Fracture, 2nd edn, Springer, Berlin Heidelberg New York

    Google Scholar 

  20. Trassaert P, Schirrer R (1983) J Mater Sci 18: 3004

    Article  CAS  Google Scholar 

  21. Doell W, Koenczel L, Schinker MG (1984) Colloid and Polym Sci 259: 171

    Article  Google Scholar 

  22. Weidmann G and Doell W (1978) Int J Fract 14: R189

    Google Scholar 

  23. Koenczel L, Schirrer R, Doell W (1981) In: IUPAC Proceddings B4: 1050, Strasbourg

    Google Scholar 

  24. Donald AM, Kramer EJ (1982) J Mater Sci 17: 1739

    Article  CAS  Google Scholar 

  25. Farrar NR, Kramer EJ (1981) Polymer 22: 691

    Article  CAS  Google Scholar 

  26. Beardmore P, Rabinowitz S (1975) J Mater Sci 10: 1763

    Article  CAS  Google Scholar 

  27. Brown HR, Ward IM (1973) Polymer 14: 469

    Article  CAS  Google Scholar 

  28. Giraud JP, EAHP Strasbourg (1983) Private Communication

    Google Scholar 

  29. Mauzac O, Schirrer R (to be published) J Appl Polym Sci

    Google Scholar 

  30. Mauzac (1988) Private Communication

    Google Scholar 

  31. Williams JG (1972) Int J Fracture 9: 393

    Google Scholar 

  32. Williams JG (1978) Adv Polym Sci 27: 67

    CAS  Google Scholar 

  33. Atkins AG, Lee CS, Caddel RM (1975) J Mater Sci 10: 1381

    Article  CAS  Google Scholar 

  34. Parvin M, Williams JG (1975) J Mater Sci 10: 1883

    Article  CAS  Google Scholar 

  35. Marshall GP, Coutts LH, Williams JG (1974) J. Mater Sci 9: 1409

    Article  CAS  Google Scholar 

  36. Kramer EJ, Hart EW (1984) Polymer 25: 1667

    Article  CAS  Google Scholar 

  37. Bauwens JC (1971) J Polym Sci 33: 123

    Google Scholar 

  38. Bauwens-Crowet C (1973) J Mater Sci 8: 968

    Article  CAS  Google Scholar 

  39. Bauwens JC (1972) J Mater Sci 7: 757

    Article  Google Scholar 

  40. Schirrer R, Schinker MG, Koenczoel L, Doell W (1981) Colloid and Polym Sci 259: 812

    Article  CAS  Google Scholar 

  41. Doell W, Koenczoel L, Schinker MG (1983) Polymer 24: 1213

    Article  Google Scholar 

  42. Barenblatt GI, Eutov VM, Salganik RL (1968) IUTAM Symp Thermoinelast East Kilbridge 33

    Google Scholar 

  43. Schirrer R, Galleron G (1988) Polymer 29: 634

    Article  CAS  Google Scholar 

  44. Schinker MG, Doell W (1979) In: Harding J (ed) Mechanical properties at high rates of strain, Conference series No 47, London, p 224

    Google Scholar 

  45. Fraser RAW, Ward IM (1978) Polymer 19: 220

    Article  CAS  Google Scholar 

  46. Morgan GP, Ward IM (1977) Polymer 18: 87

    Article  CAS  Google Scholar 

  47. Kambour RP (1964) Polymer 5: 143

    Article  CAS  Google Scholar 

  48. Kambour RP (1964) J Polym Sci A, 2: 4165

    CAS  Google Scholar 

  49. Jud K, Kausch HH, Williams JG (1981) J Mater Sci 16: 204

    Article  CAS  Google Scholar 

  50. Kambour RP (1968) Polym Eng Sci 8: 281

    Article  CAS  Google Scholar 

  51. Kambour RP, KOPP W (1969) J Polym Sci Polym Phys Edn 7: 183

    CAS  Google Scholar 

  52. Hoare J, Hull D (1972) Phil Mag 26: 443

    Article  CAS  Google Scholar 

  53. Schirrer R (1987) J Mater Sci 22: 2289

    Article  CAS  Google Scholar 

  54. Miller P, Kramer EJ (1979) Proceedings of “Deformation, Yield and Fracture of Polymers”, Cambridge UK

    Google Scholar 

  55. Kramer EJ (1979) In: Andrew EH (ed) Developments in polymer fracture, Appl Sci Pub, London, p 55

    Google Scholar 

  56. Rabinowitz S, Beardmore P (1972) Critical Reviews in Macromol Sci 1: 1

    Google Scholar 

  57. Gent AN (1976) The mechanics of fracture In: Erdogan F (ed) AMD, American Society of Mechanical Engineering, NY, vol 19 p 55

    Google Scholar 

  58. Kambour RP (1973) Polymer Sci, part D, Macromolecular Reviews 7: 1

    Article  Google Scholar 

  59. Kastelic JR, Baer E (1973) J Macromol Sci — Phys B7: 679

    Article  Google Scholar 

  60. Brown N, Fischer S (1975) J Polym Sci — Polym Phys 13: 1315

    Article  CAS  Google Scholar 

  61. Olf HG, Peterlin A (1974) J Polym Sci — Polym Phys 12: 2209

    Article  CAS  Google Scholar 

  62. Brown N, Metzger BD (1980) J Polym Sci — Polym Phys 18: 1979

    Article  CAS  Google Scholar 

  63. Abo-el-Ezz AE, Takeda N, Takahashi K (1986) J Mater Science 21: 1631

    Article  CAS  Google Scholar 

  64. Brown HR, Kramer EJ (1981) J Macromol Sci, Phys, B19: 487

    Article  CAS  Google Scholar 

  65. Kranz HG, Kramer EJ, Ast DG (1976) J Mater Sci 11: 2211

    Article  Google Scholar 

  66. Krenz HG, Ast DG, Kramer EJ (1976) J Mater Sci 11: 2198

    Article  CAS  Google Scholar 

  67. Krenz HG (1976) PhD Thesis, Cornell University

    Google Scholar 

  68. Schirrer R, Galleron G (1988) Poymer 29: 634

    CAS  Google Scholar 

  69. Bevan L, Doell W, Koenczoel L (1986) Polymer Bulletin, 16: 545

    Article  CAS  Google Scholar 

  70. Bevan L, Doell W, Koenczoel L (1986) J Polym Sci — Polym Phys 24: 2433

    Article  CAS  Google Scholar 

  71. Bevan L (1982) J Applied Polym Sci 27: 4263

    Article  CAS  Google Scholar 

  72. Wang WC, Kramer EJ (1982) Polymer 23: 1667

    Article  CAS  Google Scholar 

  73. Wang WC, Kramer EJ (1982) J Mater Sci 17: 2013

    Article  CAS  Google Scholar 

  74. Schirrer R (1988) Polymer 29: 1615

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. -H. Kausch

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Schirrer, R. (1990). Optical interferometry: Running crack-tip morphologies and craze material properties. In: Kausch, H.H. (eds) Crazing in Polymers Vol. 2. Advances in Polymer Science, vol 91/92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0018022

Download citation

  • DOI: https://doi.org/10.1007/BFb0018022

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51306-3

  • Online ISBN: 978-3-540-46192-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics