Skip to main content

Conventional and living carbocationic polymerizations united. I. A comprehensive model and new diagnostic method to probe the mechanism of homopolymerizations

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 112))

Abstract

A closed-loop comprehensive model uniting impurity-induced and purposely-added initiator-induced isobutylene (IB) and styrene (St) polymerizations was developed. Both impurity-induced and purposely-induced olefin polymerizations can be both conventional or living, and the reaction conditions will determine whether the prevailing mechanism will be conventional or living. The model was used to elucidate the detailed mechanism of olefin polymerizations and to provide guidance toward preparative advances. The heart of the model is the Winstein ionicity spectrum which in its simplest form consists of three fundamental entities connected by two equilibria: a) a dormant species (in fact the initiator) which can be either a protic impurity or a purposefully added cationogen (“HX” or RX); b) a polarized covalent dipole \(( \sim \mathop C\limits^{\delta \oplus } ------\mathop X\limits^{\delta \oplus } MtX_n )\)which arises from the dormant species under the influence of excess Friedel-Crafts acid coinitiator (MtXn) and is the source of living chains, and c) a dissociated ionic species \(\sim C^ \oplus + MtX_{n + 1}^ \ominus\)which yields conventional nonliving (i.e., transfer-dominated) chains. Under conventional conditions in charges containing a stoichiometric excess of MtXn relative to the initiator (be this protic impurity or purposely-added cationogen), the contribution of the highly reactive ionic species to the polymerization rate is overwhelming and it is difficult to find evidence for the presence of the much less reactive dipole which is responsible for the relatively slow living propagation. Upon the addition of an electron pair donor (ED), hereafter electron donor, to a conventional charge, the ED and the excess MtXn instantaneously form a complex MtXn · ED, which in turn interacts with the carbocation (∼C) and thus yields an additional (fourth) species \(\sim \mathop C\limits^{\delta \oplus } ------[\mathop {MtX}\limits^{\delta \oplus } _n \cdot ED]...MtX_{n + 1}^ \ominus\)in the Winstein ionicity spectrum which becomes another source of relatively slowly propagating living chains. The new model led to a comprehensive diagnostic method which in turn led to new insight into mechanistic details of olefin polymerizations in respect of rapid/slow initiation, monomolecular/bimolecular chain transfer, impurity-induced/purposely-induced initiation, rates of ion generation/cationation, and to an examination of the constancy of various rate constants. All the elementary events, namely initiation (comprising of ion generation and cationation), propagation, monomolecular and biomolecular chain transfer and reversible (quasiliving) termination, are controlled by their individual Winstein ionicity spectra, the characteristics of which determine the rates, conversions, product molecular weights and molecular weight distributions (MWD). Specifically, the effects of ED (triethyl amine, TEA) and Friedel-Crafts acid (TiCl4) concentrations, medium polarity (mixtures of CH2Cl2/n-C6H14), temperature (from −20 to −82°C), and reagent addition sequence (aging) on IB and St polymerization rates, and polyisobutylene (PIB) and polystyrene (PSt) mol. wts. and MWDs were determined quantitatively and analyzed. The model shows the way toward the synthesis of controlled mol. wt. polyolefins of narrow MWD (Mw/Mn<1.1) by living polymerization.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. Kennedy JP, Ivàn B (1991) Designed polymers by carbocationic macromolecular engineering: theory and practice. Hanser, Munich

    Google Scholar 

  2. Vairon JP, Rives A, Bunel C (1992) Makromol Chem, Macromol Symp 60: 97

    Google Scholar 

  3. Cho CG, Feit BA, Webster OW (1990) Macromolecules 23: 1918

    Google Scholar 

  4. Balogh L, Faust R (1992) Polym Bull 28: 367

    Google Scholar 

  5. Kennedy JP, Midha S, Keszler B (1993) Macromolecules 26: 424

    Google Scholar 

  6. Puskàs JE, Kaszàs G, Litt M (1991) Macromolecules 24: 5278

    Google Scholar 

  7. Pratap G, Heller JP (1992) J Polym Sci Part A: Polym Chem 30: 163

    Google Scholar 

  8. Kennedy JP (1991) Makromol Chem, Macromol Symp 47: 55

    Google Scholar 

  9. Kennedy JP (1992) Makromol Chem, Macromol Symp 60: 1

    Google Scholar 

  10. Györ M, Balogh L, Wang H-C, Faust R (1992) Polymer Preprints 33(1): 158

    Google Scholar 

  11. Plesch PH (1992) Makromol Chem, Macromol Symp 60: 11

    Google Scholar 

  12. Kennedy JP, Hayashi A (1991) J Macromol Sci-Chem A28(2): 197

    Google Scholar 

  13. Lubnin AV, Kennedy JP (1992) Polym Bull 29: 9

    Google Scholar 

  14. Lubnin AV, Kennedy JP (1992) Polym Bull 29: 247

    Google Scholar 

  15. Pernecker T, Kelen T, Kennedy JP: publication in preparation

    Google Scholar 

  16. Deàk Gy, Zsuga M, Kelen T (1992) Polym Bull 29: 239

    Google Scholar 

  17. Faust R, Ivan B, Kennedy JP (1991) J Macromol Sci-Chem A28(1): 1

    Google Scholar 

  18. Kennedy JP, Kelen T, Tüdös F (1982–83) J Macromol Sci-Chem A18: 1189

    Google Scholar 

  19. Szwarc M (1992) Makromol Chem, Rapid Common 13: 141

    Google Scholar 

  20. Sigwalt P (1991) Makromol Chem, Macromol Symp 47: 179

    Google Scholar 

  21. Penczek S, Kubisa P, Szymanski R (1991) Makromol Chem, Rapid Comm 12: 77

    Google Scholar 

  22. Kamigaito M, Yamacka K, Sawamoto M, Higashimura T (1992) Macromolecules 25: 6400

    Google Scholar 

  23. Ivàn B (1993) Makromol Chem, Macromol Symp 67: 311

    Google Scholar 

  24. Ivàn B, Kennedy JP (1990) Macromolecules 23: 2880

    Google Scholar 

  25. Plesch PH (1988) Polym Bull 19: 145

    Google Scholar 

  26. Sawamoto M (1991) Prog Polym Sci 16: 111

    Google Scholar 

  27. Higashimura T, Sawamoto M (1984) Advances in Polymer Sci 62: 49

    Google Scholar 

  28. Ohtori T, Hirokawa Y, Higashimura T (1979) Polymer J 11(6): 471

    Google Scholar 

  29. Zsuga M, Kennedy JP, Kelen T (1989) J Macromol Sci-Chem A26: 1305

    Google Scholar 

  30. Ivàn B, Zsuga M, Gruber F, Kennedy JP (1988) Polymer Preprints 29(2): 33

    Google Scholar 

  31. Matyjaszewski K, Chih-Kwa Lin (1991) Makromol Chem, Macromol Symp 47: 221

    Google Scholar 

  32. Penczek S (1992) Makromol Chem, Rapid Commun 13: 147

    Google Scholar 

  33. Szwarc M, Zimm BH (1983) Macromolecules 16: 1918

    Google Scholar 

  34. Kennedy JP (1992) Polym Preprints 33(1): 150

    Google Scholar 

  35. Gandini A, Martinez A (1988) Makromol Chem, Macromol Symp 13/14: 211

    Google Scholar 

  36. Kaszàs G, Puskàs J, Chen CC, Kennedy JP (1988) Polym Bull 20: 413

    Google Scholar 

  37. Györ M, Wang H-C, Faust R (1992) J Macromol Sci-Pure Appl Chem A29(8): 639

    Google Scholar 

  38. Pernecker T, Kennedy JP (1991) Polymer Bulletin 26: 305

    Google Scholar 

  39. Nuyken O, Kroner H (1990) Macromol Chem 191: 1

    Google Scholar 

  40. Pernecker T, Kennedy JP (1992) Polym Bull 29: 15

    Google Scholar 

  41. Sawamoto M, Higashimura T (1991) 10th International Symp. Balatonfured, Hungary

    Google Scholar 

  42. Kaszàs G, Puskàs J, Kennedy JP (1987) Polym Bull 18: 123

    Google Scholar 

  43. Kennedy JP, Marechal E (1982) Carbocationic polymerization. Wiley-Interscience, New York, 1982

    Google Scholar 

  44. Kennedy JP, Smith RA (1980) J Polym Sci, Polym Chem Ed 18: 1523

    Google Scholar 

  45. Szwarc M, Van Beylen M, Van Hoyweghen D (1987) Macromolecules 20: 445

    Google Scholar 

  46. Szwarc M (1990) Macromolecules 23: 4616

    Google Scholar 

  47. Nuyken O, Pask SD, Vischer A (1983) Makromol Chem 184: 553

    Google Scholar 

  48. Nuyken O, Pask SD, Vischer A, Walter M (1985) Makromol Chem 186: 173

    Google Scholar 

  49. Faust R, Fehèrvàri A, Kennedy JP (1982–83) J Macromol Sci-Chem A18: 1209

    Google Scholar 

  50. Puskàs J, Kaszàs G, Kennedy JP, Kelen T, Tüdös F (1982–83) J Macromol Sci Chem A18: 2229

    Google Scholar 

  51. Kennedy JP, Thomas RM (1960) J Polym Sci 46: 233

    Google Scholar 

  52. Leleu FM, Tardi M, Polton A, Sigwalt P (1991) Makromol Chem, Macromol Symp 47: 253

    Google Scholar 

  53. Faust R, Kennedy JP (1988) Polym Bull 19: 21

    Google Scholar 

  54. Faust R, Kennedy JP (1988) Polym Bull 19: 29

    Google Scholar 

  55. Faust R, Kennedy JP (1988) Polym Bull 19: 35

    Google Scholar 

  56. Faust R, Kennedy JP (1987) J Polym Sci Part A, Polymer Chemistry, 25: 1847

    Google Scholar 

  57. Ivàn B, Kennedy JP (1990) J Polym Sci Part A: Chem Ed 28: 89

    Google Scholar 

  58. Heroguez V, Deffieux A, Fontanille M (1990) Makromol Chem, Macromol Symp 32: 199

    Google Scholar 

  59. Litt M (1962) J Polym Sci 58: 429

    Google Scholar 

  60. Szwarc M (1968) Carbanious, living polymers and electron transfer processes. Wiley-Interscience, New York, 1968

    Google Scholar 

  61. Kennedy JP, Chen FJ-Y (1986) Polymer Bulletin 15: 201

    Google Scholar 

  62. Tsunogae Y, Majoros I, Kennedy JP (1993) J Macromol Sci-Chem A30: 253

    Google Scholar 

  63. Kaszàs G, Puskàs J, Kennedy JP (1988) Makromol Chem, Macromol Symp 13/14: 473

    Google Scholar 

  64. Bui L, Nguyen HA, Marechal E (1987) Polym Bull 17: 157

    Google Scholar 

  65. Higashimura T, Hira M, Hasegawa H (1979) Macromolecules 12: 217

    Google Scholar 

  66. Zsuga M, Kelen T (1986) Polym Bull 16: 285

    Google Scholar 

  67. Thomas L, Polton A, Tardi M, Sigwalt P (1992) Macromolecules 25: 5886

    Google Scholar 

  68. Matyjaszewski K (1993) J Polym Sci, Polym Chem Ed 31: 995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Majoros, I., Nagy, A., Kennedy, J.P. (1994). Conventional and living carbocationic polymerizations united. I. A comprehensive model and new diagnostic method to probe the mechanism of homopolymerizations. In: Theories and Mechanism of Phase Transitions, Heterophase Polymerizations, Homopolymerization, Addition Polymerization. Advances in Polymer Science, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0017981

Download citation

  • DOI: https://doi.org/10.1007/BFb0017981

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57236-7

  • Online ISBN: 978-3-540-47989-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics