Skip to main content

The geometry of visual space distortion

  • Representation and Shape Perception
  • Conference paper
  • First Online:
Algebraic Frames for the Perception-Action Cycle (AFPAC 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1315))

Abstract

The encounter of perception and action happens at the intermediate representations of space-time. In many of the computational models employed in the past, it has been assumed that a metric representation of physical space can be derived by visual means. Psychophysical experiments, as well as computational considerations, can convince us that the perception of space and shape has a much more complicated nature, and that only a distorted version of actual, physical space can be computed. This paper develops a computational geometric model that explains why such distortion might take place. The basic idea is that, both in stereo and motion, we perceive the world from multiple views. Given the rigid transformation between the views and the properties of the image correspondence, the depth of the scene can be obtained. Even a slight error in the rigid transformation parameters causes distortion of the computed depth of the scene. The unified framework introduced here describes this distortion in computational terms. We characterize the space of distortions by its level sets, that is, we characterize the systematic distortion via a family of iso-distortion surfaces which describes the locus over which depths are distorted by some multiplicative factor. Clearly, functions of the distorted space exhibiting some sort of invariance, produce desirable representations for biological and artificial systems [13]. Given that humans' estimation of egomotion or estimation of the extrinsic parameters of the stereo apparatus is likely to be imprecise, the framework is used to explain a number of psychophysical experiments on the perception of depth from motion or stereo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Y. Aloimonos and D. Shulman. Learning early-vision computations. Journal of the Optical Society of America A, 6:908–919, 1989.

    Google Scholar 

  2. A. Ames, K. N. Ogle, and G. H. Glidden. Corresponding retinal points, the horopter and the size and shape of ocular images. Journal of the Optical Society of America A, 22:538–631, 1932.

    Google Scholar 

  3. G. Baratoff. Qualitative Space Representations Extracted from Stereo. PhD thesis, Department of Computer Science, University of Maryland, 1997.

    Google Scholar 

  4. L. Cheong, C. Fermüller, and Y. Aloimonos. Interaction between 3D shape and motion: Theory and applications. Technical Report CAR-TR-773, Center for Automation Research, University of Maryland, June 1996.

    Google Scholar 

  5. K. Daniilidis. On the Error Sensitivity in the Recovery of Object Descriptions. PhD thesis, Department of Informatics, University of Karlsruhe, Germany, 1992. In German.

    Google Scholar 

  6. K. Daniilidis and H. H. Nagel. Analytical results on error sensitivity of motion estimation from two views. Image and Vision Computing, 8:297–303, 1990.

    Article  Google Scholar 

  7. K. Daniilidis and M. E. Spetsakis. Understanding noise sensitivity in structure from motion. In Y. Aloimonos, editor, Visual Navigation: From Biological Systems to Unmanned Ground Vehicles, chapter 4. Lawrence Erlbaum Associates, Hillsdale, NJ, 1997.

    Google Scholar 

  8. O. D. Faugeras. Three-Dimensional Computer Vision. MIT Press, Cambridge, MA, 1992.

    Google Scholar 

  9. C. Fermüller and Y. Aloimonos. Direct perception of three-dimensional motion from patterns of visual motion. Science, 270:1973–1976, 1995.

    PubMed  Google Scholar 

  10. C. Fermüller and Y. Aloimonos. Algorithm independent stabiity analysis of structure from motion. Technical Report CAR-TR-840, Center for Automation Research, University of Maryland, 1996.

    Google Scholar 

  11. C. Fermüller and Y. Aloimonos. Ordinal representations of visual space. In Proc. ARPA Image Understanding Workshop, pages 897–903, February 1996.

    Google Scholar 

  12. C. Fermüller and Y. Aloimonos. Towards a theory of direct perception. In Proc. ARPA Image Understanding Workshop, pages 1287–1295, February 1996.

    Google Scholar 

  13. C. Fermüller and Y. Aloimonos. Ambiguity in structure from motion: Sphere versus plane. International Journal of Computer Vision, 1997. In press.

    Google Scholar 

  14. J. M. Foley. Effects of voluntary eye movement and convergence on the binocular appreciation of depth. Perception and Psychophysics, 11:423–427, 1967.

    Google Scholar 

  15. J. M. Foley. Binocular distance perception. Psychological Review, 87:411–434, 1980.

    Article  PubMed  Google Scholar 

  16. J. J. Gibson. The Perception of the Visual World. Houghton Mifflin, Boston, 1950.

    Google Scholar 

  17. W. C. Gogel. The common occurrence of errors of perceived distance. Perception & Psychophysics, 25(1):2–11, 1979.

    Google Scholar 

  18. W. C. Hoffman. The Lie algebra of visual perception. Journal of Mathematical Psychology, 3:65–98, 1966.

    Article  Google Scholar 

  19. B. K. P. Horn. Robot Vision. McGraw Hill, New York, 1986.

    Google Scholar 

  20. E. B. Johnston. Systematic distortions of shape from stereopsis. Vision Research, 31:1351–1360, 1991.

    Article  PubMed  Google Scholar 

  21. R. Julesz. Foundations of Cyclopean Perception. University of Chicago Press, Chicago, IL, 1971.

    Google Scholar 

  22. J. J. Koenderink and A. J. van Doorn. Two-plus-one-dimensional differential geometry. Pattern Recognition Letters, 15:439–443, 1994.

    Article  Google Scholar 

  23. J. J. Koenderink and A. J. van Doorn. Relief: Pictorial and otherwise. Image and Vision Computing, 13:321–334, 1995.

    Article  Google Scholar 

  24. S. Kosslyn. Image and Brain. MIT Press, Cambridge, MA, 1993.

    Google Scholar 

  25. J. M. Loomis, J. A. D. Silva, N. Fujita, and S. S. Fukusima. Visual space perception and visually directed action. Journal of Experimental Psychology, 18(4):906–921, 1992.

    PubMed  Google Scholar 

  26. R. K. Luneburg. Mathematical Analysis of Binocular Vision. Princeton University Press, Princeton, NJ, 1947.

    Google Scholar 

  27. H. A. Mallot, S. Gillner, and P. A. Arndt. Is correspondence search in human stereo vision a coarse-to-fine process? Biological Cybernetics, 74:95–106, 1996.

    Article  PubMed  Google Scholar 

  28. D. Marr. Vision. W.H. Freeman, San Francisco, CA, 1982.

    Google Scholar 

  29. S. J. Maybank. Theory of Reconstruction from Image Motion. Springer, Berlin, 1993.

    Google Scholar 

  30. J. E. W. Mayhew and H. C. Longuet-Higgins. A computational model of binocular depth perception. Nature, 297:376–378, 1982.

    Article  PubMed  Google Scholar 

  31. K. N. Ogle. Researches in Binocular Vision. Hafner, New York, 1964.

    Google Scholar 

  32. J. G. Semple and L. Roth. Inroduction to Algebraic Geometry. Oxford University Press, Oxford, United Kingdom, 1949.

    Google Scholar 

  33. J. S. Tittle, J. T. Todd, V. J. Perotti, and J. F. Norman. Systematic distortion of perceived three-dimensional structure from motion and binocular stereopsis. Journal of Experimental Psychology: Human Perception and Performance, 21:663–678, 1995.

    Article  Google Scholar 

  34. J. T. Todd and P. Bressan. The perception of three-dimensional affine structure from minimal apparent motion sequences. Perception and Psychophysics, 48:419–430, 1990.

    PubMed  Google Scholar 

  35. R. Y. Tsai and T. S. Huang. Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:13–27, 1984.

    Google Scholar 

  36. H. L. F. von Helmholtz. Treatise on Physiological Optics, volume 3. Dover, 1962. J. P. C. Southhall, trans. Originally published in 1910.

    Google Scholar 

  37. M. Wagner. The metric of visual space. Perception and Psychophysics, 38:483–495, 1985.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerald Sommer Jan J. Koenderink

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fermüller, C., Cheong, L., Aloimonos, Y. (1997). The geometry of visual space distortion. In: Sommer, G., Koenderink, J.J. (eds) Algebraic Frames for the Perception-Action Cycle. AFPAC 1997. Lecture Notes in Computer Science, vol 1315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0017872

Download citation

  • DOI: https://doi.org/10.1007/BFb0017872

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63517-8

  • Online ISBN: 978-3-540-69589-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics