Narrowing a 2n-block of sortings in O (n logn)

  • Noëlle Bleuzen Guernalec
  • Alain Colmerauer
Session 1
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1330)


Let D be a totally ordered set and n a positive integer. Call 2n-block a Cartesian product of 2n closed and possibly empty intervals of D. Let sort be the set of all 2n-tuples of elements of D of the form (x1,..., xn, y1;..., yn), where (y1,..., yn) is the n-tuple obtained by sorting in increasing order the terms of the n-tuple (x1,..., xn).

This paper is devoted to the study of an algorithm of complexity O(n logn), which, given a 2n-block P, computes, in the sense of inclusion, the smallest 2n-block containing the set sort ∩ P.


Compact Representation Great Element Empty Interval Operation Graph Final Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aillaud C., Résolution de contraintes par analyse de parties convexes de R, Thèse de doctorat, Laboratoire d'Informatique de Marseille, Université de la Méditerranée, July 1997.Google Scholar
  2. [2]
    Leconte M., A Bounds-based Reduction Scheme for Constraints of Difference. Constraint-96, Second International Workshop on Constraint-based Reasoning, Key West. Florida, 19 May 1996.Google Scholar
  3. [3]
    Older W.J. and A. Vellino, Extending Prolog with Constraint Arithmetic on Real Intervals, Proceeding of the Canadian Conference on Electrical and Computer Engineering, 1990.Google Scholar
  4. [4]
    Older W.J., F. Swinkels and M. van Emden, Getting to the Real Problem: Experience with BNR-Prolog in OR, in Proceedings of the Third International Conference on the Practical Applications of Prolog, (PAP'95 at Paris), Alinmead Software Ltd, ISBN 0 9 525554 0 9., April 1995.Google Scholar
  5. [5]
    Zhou J., A constraint program for solving the job-shop problem, Principles and Practice of Constraint programming, (Proc. of CP'96, Cambridge, USA), edited by Eugene C. Freuder, Lecture Notes in Computer Science, Springer Verlag, pp 510–524, August 1996.Google Scholar
  6. [6]
    Zhou J.. Computing Smallest Cartesian Products of Intervals: Application to the Jobshop Scheduling Problem, Thèse de doctorat, Laboratoire d'Informatique de Marseille, Université de la Méditerranée, March 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Noëlle Bleuzen Guernalec
  • Alain Colmerauer
    • 1
  1. 1.Laboratoire d'Informatique de MarseilleCNRS et Universités de Provence et de la MéditerranéeFrance

Personalised recommendations