Skip to main content

Eigenmodes of classical fluids in thermal equilibrium

  • Session I: Statistical Mechanics
  • Conference paper
  • First Online:
Trends in Applications of Pure Mathematics to Mechanics

Part of the book series: Lecture Notes in Physics ((LNP,volume 249))

  • 1838 Accesses

Abstract

The eigenmodes of a classical fluid in thermal equilibrium are discussed. For long wavelengths and times, they can be computed from linear hydrodynamic equations. They are then the hydrodynamic modes, in particular, the heat mode, which describes the diffusion of heat in the fluid and two sound modes. For short wavelengths and times they can be derived from linear kinetic operators. For low densities, the linear Boltzmann operator can be employed and the three most important eigenmodes are direct extensions of the kinetic analogues of the heat and sound modes. For high densities, a generalization of the Boltzmann operator is used. The most important eigenmode is the extended heat mode, while next in importance come two eigenmodes that are extensions of the sound modes. These three extended hydrodynamic modes can be used to obtain the light and neutron spectra of fluids and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boon, J. P. and Yip, S., Molecular Hydrodynamics, (McGraw Hill, New York, 1980).

    Google Scholar 

  2. Résibois, P. and de Leener, M., Classical Kinetic Theory of Fluids, (Wiley-Interscience, New York, 1977).

    Google Scholar 

  3. Hansen, J. P. and McDonald, I. R., The Theory of Simple Liquids, (Academic Press, London, 1976).

    Google Scholar 

  4. Zwanzig, R., Ann. Rev. Phys. Chem. 16 (1965) 67.

    Google Scholar 

  5. Berne, B. J. and Pecora, R., Dynamic Light Scattering, (Wiley-Interscience, New York, 1976).

    Google Scholar 

  6. Wood, W. W., in: Fundamental Problems in Statistical Mechanics, III, Cohen, E. G. D., ed., (North-Holland, Amsterdam, 1975)

    Google Scholar 

  7. Wood, W. W. and Erpenbeck, J. J., Ann. Rev. Phys. Chem. 27 (1976) 319.

    Google Scholar 

  8. Mountain, R. D., Rev. Mod. Phys. 38 (1966) 205.

    Google Scholar 

  9. Foch, J. D. and Ford G. W., in: Studies in Statistical Mechanics, V, de Boer, J. and Uhlenbeck, G. E., eds., (North-Holland, Amsterdam, 1970), Part B, Chap. Ii.

    Google Scholar 

  10. See, for instance, Ernst, M. H. and Dorfman, J. R., J. Stat. Phys. 12 (1975) 311.

    Google Scholar 

  11. DeMasi, A., Ianiro, N., Pellegrinotti, A. and Presutti, in: Studies in Statistical Mechanics, XI, Lebowitz, J. L. and Montroll, E. W., eds. (North-Holland, Amsterdam, 1984).

    Google Scholar 

  12. de Schepper, I. M., van Rijs, J. C. and Cohen, E. G. D., Physica A, 1986.

    Google Scholar 

  13. Ref. [9], Part B, Ch. III.

    Google Scholar 

  14. Greenberg, W., Polewezak, J. and Zweifel, P. F., in: The Boltzmann Equation in Studies in Statistical Mechanics, X, Montroll, E. W. and Lebowitz, J. L., eds., (North-Holland, Amsterdam, 1983).

    Google Scholar 

  15. Wang Chang, C. S. and Uhlenbeck, G. E., in: Studies in Statistical Mechanics, V, de Boer, J. and Uhlenbeck, G. E., eds., (North-Holland, Amsterdam, 1970), Part A, Ch. IV.

    Google Scholar 

  16. Alterman, Z., Frankowski, K. and Pekeris, C. S., Am. Astrophys. J. Suppl. 69, VII, (1962) 291.

    Google Scholar 

  17. Chapman, S. and Cowling, T. G., The Mathematical Theory of Nonuniform Gases, (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  18. Grad, H., Commun. Pure and Appl. Math. 2 (1949) 331.

    Google Scholar 

  19. Kamgar-Parsi, B. and Cohen, E. G. D., to be published.

    Google Scholar 

  20. Lebowitz, J. L., Percus, J. K. and Sykes, J., Phys. Rev. 188 (1969) 487.

    Google Scholar 

  21. Mazenko, G. F., Phys. Rev. A7 (1973) 209, 222; 9 (1974) 360.

    Google Scholar 

  22. Konijnendijk, H. M. U. and van Leeuwen, J. M. J., Physica 64 (1973) 232.

    Google Scholar 

  23. Beijeren, H. and Ernst, M. H., Physica 68 (1973) 43, J. Stat. Phys. 21 (1979) 125.

    Google Scholar 

  24. Dorfman, J. R. and Cohen, E. G. D., Phys. Rev. A12 (1975) 292.

    Google Scholar 

  25. Mazenko, G. F. and Yip, S., in: Mondern Theoretical Chemistry, Vol. 6, (Plenum Press, New York, 1977).

    Google Scholar 

  26. de Schepper, I. M. and Cohen, E. G. D., J. Stat. Phys. 27 (1982) 223.

    Google Scholar 

  27. Ref. [15], Ch. V.

    Google Scholar 

  28. de Schepper, I. M., Cohen, E. G. D. and Zuilhof, M. J., Phys. Lett. 101A (1984) 399.

    Google Scholar 

  29. Zuilhof, M. J., Cohen, E. G. D. and de Schepper, I. M., Phys. Lett. 103A (1984) 120.

    Google Scholar 

  30. Cohen, E. G. D., de Schepper, I. M. and Zuilhof, M. J., Physica 127B (1984) 282.

    Google Scholar 

  31. Kirkpatrick, T. R., Phys. Rev. A32 (1985).

    Google Scholar 

  32. Cohen, E. G. D., de Schepper, I. M. and Kamgar-Parsi, B., Phys. Letts., (1986).

    Google Scholar 

  33. Alley, W. E. and Alder, B. J., Phys. Rev. A27 (1983) 3158.

    Google Scholar 

  34. Alley, W. E., Alder, B. J. and Yip, S., Phys. Rev. A27 (1983) 3174.

    Google Scholar 

  35. de Schepper, I. M., and Cohen, E. G. D., Phys. Rev. A22 (1980) 287.

    Google Scholar 

  36. de Schepper, I. M., Verkerk, P., van Well, A. A. and de Graaf, L. A., Phys. Rev. Lett. 50 (1983) 974.

    Google Scholar 

  37. van Well, A. A., de Graaf, L. A., Verkerk, P., Suck, J. B. and Copley, J. R., Phys. Rev. A31 (1985) 3391.

    Google Scholar 

  38. Verkerk, P., Ph. D. Thesis, University of Technology, Delft (1985).

    Google Scholar 

  39. van Well, A. A. and de Graaf, L. A., Phys. Rev. A32 (1985).

    Google Scholar 

  40. van Well, A. A. and de Graaf, L. A., Phys. Rev. A32 (1985).

    Google Scholar 

  41. van Well, A. A., Ph. D. Thesis, University of Technology, Delft (1985).

    Google Scholar 

  42. de Schepper, I. M., van Rijs, J. C., van Well, A. A., Verkerk, P., de Graaf, L. A. and Bruin, C., Phys. Rev. 29A (1984) 1602.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ekkehart Kröner Klaus Kirchgässner

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

Cohen, E.G.D. (1986). Eigenmodes of classical fluids in thermal equilibrium. In: Kröner, E., Kirchgässner, K. (eds) Trends in Applications of Pure Mathematics to Mechanics. Lecture Notes in Physics, vol 249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0016379

Download citation

  • DOI: https://doi.org/10.1007/BFb0016379

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16467-8

  • Online ISBN: 978-3-540-39803-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics