Skip to main content

Fibonacci numeration systems and rational functions

  • Communications
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1986 (MFCS 1986)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 233))

Abstract

In the Fibonacci numeration system of order m (m integer ≥2), every integer has a unique canonical representation which has no run of m consecutive l's. We show that this canonical representation can be obtained from any representation by a rational function, which is the composition of two subsequential functions that are simply obtained from the system. The addition of two integers represented in this system can be performed by a subsequential machine. The conversion from a Fibonacci representation to a standard binary representation (or conversely) cannot be realized by a finite-state machine.

This research has been partly supported by the Programme de Recherches Coordonnées Mathématiques et Informatique of the Ministère de la Recherche et de la Technologie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Berstel, Transductions and context-free languages. Teubner, 1979.

    Google Scholar 

  2. J. Berstel, Fonctions rationnelles et additions, Actes de l'Ecole de Printemps de Théorie des Languages, L.I.T.P. Paris, 1982, 177–183.

    Google Scholar 

  3. L. Carlitz, Fibonacci representations. Fibonacci Quat. 6(4) (1968), 193–220.

    Google Scholar 

  4. A. Cobham, On the base-dependance of sets of numbers recognizable by finite automata. Math. Systems Theory 3 (1969), 186–192.

    Google Scholar 

  5. K. Culik II and A. Salomaa, Ambiguity and decision problems concerning number systems. L.N.C.S. 154 (1983), 137–146.

    Google Scholar 

  6. S. Eilenberg, Automata, Languages and Machines, vol. A, Academic Press, 1974.

    Google Scholar 

  7. G. Hansel, A propos d'un théorème de Cobham. Actes de la fète des mots (D. Perrin ed.), Rouen juin 1982, Greco de Programmation, C.N.R.S.

    Google Scholar 

  8. J. Honkala, Bases and ambiguity of number systems. Theoretical Computer Science 31 (1984), 61–71.

    Google Scholar 

  9. W. H. Kautz, Fibonacci Codes for Synchronization Control. I.E.E.E. Trans. Inform. Theory IT-11 (1065), 284–292.

    Google Scholar 

  10. D.E. Knuth, The art of computer programming. Vol. 1,2 and 3, Addison-Wesley, 1975.

    Google Scholar 

  11. A. de Luca and A. Restivo, Restivo, Representations of integers and language theory. L.N.C.S. 176 (1984), 407–415.

    Google Scholar 

  12. E.P. Miles, Jr., Generalized Fibonacci numbers and associated matrices. Amer. Math. Monthly 67 (1960), 745–752.

    Google Scholar 

  13. J. Sakarovitch, Description des monoides de type fini. E.I.K. 8/9 (1981), 417–434.

    Google Scholar 

  14. E. Zeckendorf, Representation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Royale des Sciences de Liège. 3–4 (1972), 179–182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jozef Gruska Branislav Rovan Juraj Wiedermann

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frougny, C. (1986). Fibonacci numeration systems and rational functions. In: Gruska, J., Rovan, B., Wiedermann, J. (eds) Mathematical Foundations of Computer Science 1986. MFCS 1986. Lecture Notes in Computer Science, vol 233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0016259

Download citation

  • DOI: https://doi.org/10.1007/BFb0016259

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16783-9

  • Online ISBN: 978-3-540-39909-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics