Advertisement

Tensor operator realisations of the classical Lie Algebras and non-trivial zeros of the 6j-symbol

  • J. Van der Jeugt
  • H. De Meyer
  • G. Van den Berghe
  • P. De Wilde
Group Representations, Group Extensions, Contractions and Bifurcations
Part of the Lecture Notes in Physics book series (LNP, volume 201)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biedenharn L. and Louck J., The Racah-Wigner Algebra in Quantum Theory, London Addison-Wesley (1981)Google Scholar
  2. 2.
    Racah G., Phys. Rev. 62, 438 (1942)Google Scholar
  3. 3.
    Racah G., Phys. Rev. 76, 1352 (1949)Google Scholar
  4. 4.
    Wadzinski H., II Nuovo Cim. 62B, 247 (1969)Google Scholar
  5. 5.
    Judd B., Operator techniques in Atomic Spectroscopy, New York: McGraw-Hill (1963)Google Scholar
  6. 6.
    McKay M. and Patera J., Tables of dimensions, indices and branching rules for representations of simple Lie algebras, New York: Marcel Dekker (1981)Google Scholar
  7. 7.
    Van der Jeugt J., Vanden Berghe G. and De Meyer H., J. Phys. A 16, 1377 (1983)Google Scholar
  8. 8.
    De Meyer H., Vanden Berghe G. and Van der Jeugt J., J. Math. Phys. (in press)Google Scholar
  9. 9.
    Vanden Berghe G. and De Meyer H., J. Math. Phys. (in press)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. Van der Jeugt
    • 1
  • H. De Meyer
    • 1
  • G. Van den Berghe
    • 1
  • P. De Wilde
    • 1
  1. 1.Seminarie voor Wiskundige NatuurkundeRijksuniversiteit-GentGentBelgium

Personalised recommendations