Skip to main content

The riches of rectangles

  • Chapter 3 Algorithmics
  • Conference paper
  • First Online:
Machines, Languages, and Complexity (IMYCS 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 381))

Included in the following conference series:

  • 126 Accesses

Abstract

In this paper we consider some of the rectangle problems that have been studied in the literature of computational geometry. Our aim is to demonstrate that although rectangles are, perhaps, the simplest of geometrical figures, they occur naturally in many situations and, thus they are a rich source for intriguing and challenging problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Atallah and M.T. Goodrich. Output-sensitive hidden surface elimination for rectangles. Technical Report 88-13, The John Hopkin's University, Department of Computer Science, Baltimore, 1988.

    Google Scholar 

  2. J.L. Bentley and D. Wood. An optimal worst case algorithm for reporting intersections of rectangles. IEEE Transactions on Computers, EC-29:571–576, 1980.

    Google Scholar 

  3. M. Bern. Hidden surface removal for rectangles. In Proceedings of the 4th ACM Symposium on Computational Geometry, pages 183–192, 1988.

    Google Scholar 

  4. H. Edelsbrunner. Dynamic rectangle intersection searching. Technical Report F 47, Institut für Informationsverarbeitung, Technische Universität Graz, 1980.

    Google Scholar 

  5. H. Edelsbrunner. New approach to rectangle intersections: Part I. International Journal of Computer Mathematics, 13:209–219, 1983.

    Google Scholar 

  6. H. Edelsbrunner. New approach to rectangle intersections: Part II. International Journal of Computer Mathematics, 13:221–229, 1983.

    Google Scholar 

  7. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, New York, 1987.

    Google Scholar 

  8. H. Edelsbrunner, J. van Leeuwen, Th. Ottmann, and D. Wood. Computing the connected components of simple rectilinear geometrical objects in d-space. RAIRO Informatique théorique, 18:171–183, 1984.

    Google Scholar 

  9. D.E. Field. Fast hit detection for disjoint rectangles. Technical Report 85-53, Department of Computer Science, University of Waterloo, 1985.

    Google Scholar 

  10. J. Kratochvil. String graphs I: The number of critical nonstring graphs is infinite. Technical Report 88-83, Charles University, Department of Mathematics and Physics, Prague, Czechoslovakia, 1988.

    Google Scholar 

  11. J. Kratochvil. String graphs II: Recognizing string graphs is NP-hard. Technical Report 88-86, Charles University, Department of Mathematics and Physics, Prague, Czechoslovakia, 1988.

    Google Scholar 

  12. E.M. McCreight. Efficient algorithms for enumerating intersecting intervals and rectangles. Technical Report CSL-80-9, Xerox Palo Alto Research Center, 1980.

    Google Scholar 

  13. E.M. McCreight. Priority search trees. SIAM Journal on Computing, 14:257–276, 1985.

    Google Scholar 

  14. J. Nievergelt, H. Hinterberger, and K.C. Sevcik. The grid file: An adaptable, symmetric multikey file structure. ACM Transactions on Database Systems, 9:38–71, 1984.

    Google Scholar 

  15. F.P. Preparata and M.I. Shamos. Computational Geometry. Springer-Verlag, New York, 1985.

    Google Scholar 

  16. F.P. Preparata, J.S. Vitter, and M. Yvinec. Computation of the axial view of a set of isothetic parallelopipeds. Technical Report 88-1, Labatoire d'Informatique de l'Ecole Normale Supérieure, Paris, France, 1988.

    Google Scholar 

  17. F.S. Roberts. Graph Theory and Its Applications to Problems of Society. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 197?

    Google Scholar 

  18. N. Sarnak and R.E. Tarjan. Planar point location using persistent search trees. Communications of the ACM, 29:669–679, 1986.

    Google Scholar 

  19. H.-W. Six and P. Widmayer. Spatial searching in geometric databases. Technical Report 176, Institut für Angewandte Informatik, Universität Karlsruhe, 1987.

    Google Scholar 

  20. H.-W. Six and D. Wood. Counting and reporting intersections of d-ranges. IEEE Transactions on Computers, C-31:181–187, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Dassow J. Kelemen

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wood, D. (1989). The riches of rectangles. In: Dassow, J., Kelemen, J. (eds) Machines, Languages, and Complexity. IMYCS 1988. Lecture Notes in Computer Science, vol 381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015937

Download citation

  • DOI: https://doi.org/10.1007/BFb0015937

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51516-6

  • Online ISBN: 978-3-540-48203-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics