The convex hull problem on grids computational and combinatorial aspects

  • Kristel Unger
Chapter 3 Algorithmics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 381)


Decision Tree Convex Hull Input Space Computational Geometry Restricted Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /DO'D/.
    Dittert, E.; M.J. O'Donnell: Lower bounds for sorting with realistic instruction sets. IEEE Trans.Comp. 34(1985), 311–317.Google Scholar
  2. /KO/.
    Karlsson,R.G.; M.H.Overmars: Scanline Algorithms on a Grid. Dep. of Comp. Science and Inf. Science, University of Linköping, Linköping 1986, Research Report LITH-IDA-86-30.Google Scholar
  3. /KR/.
    Kirkpatrick, D., Reisch, S.: Upper Bounds for Sorting Integers on Random Access Machines, Theoretical Computer Science 28(1984), 263–276.Google Scholar
  4. /O/.
    Overmars,M.H.: Computational geometry on a grid an overview. Dep.of Comp. Sc., University of Utrecht, Utrecht 1987, Technical Report RUU-CS-87-4.Google Scholar
  5. /PS/.
    Preparata, F.P., M.I. Shamos: Computational Geometry, Springer 1985, New York.Google Scholar
  6. /SY/.
    Steele, J.M.; A.C. Yao: Lower bounds for algebraic decision trees. J. of Algorithms 3(1982), 1–8.Google Scholar
  7. /U1/.
    Unger, K.: The convex hull problem on special planar point sets. K.-Weierstraß-Institut Berlin, Berlin 1988, Report R-MATH-05/88.Google Scholar
  8. /U2/.
    Unger,K.:Another method for proving lower bounds in the model of k-th order decision trees, (in preparation).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Kristel Unger
    • 1
  1. 1.Karl-Weierstraß-Institut für MathematikBerlinDDR

Personalised recommendations