Advertisement

Some properties of space-bounded synchronized alternating turing machines with only universal states

  • Anna Slobodová
Chapter 2 Machines
Part of the Lecture Notes in Computer Science book series (LNCS, volume 381)

Keywords

Turing Machine Finite Automaton Universal State Sequential Computation Computational Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.K. Chandra, D.C. Kozen and L.J. Stockmeyer, Alternation J. of ACM 28 (1981) 114–133.Google Scholar
  2. 2.
    2 E.M. Gurari and O.H. Ibarra, (Semi-)alternating stack automata, Math. System Theory 15 (1982) 211–224Google Scholar
  3. 3.
    J.E. Hopcroft and J.D. Ullman, Formal languages and their relation to automata (Addison-Wesley, Reading, MA, 1969).Google Scholar
  4. 4.
    4 J. Hromkovič, Alternating multicounter machines with constant number of reversals, Information Processing Letters 21 (1985) 7–9.Google Scholar
  5. 5.
    5 J. Hromkovič, On the power of alternation in automata theory, J. of Comp. and Sys. Sci. 31 (1985) 28–39.Google Scholar
  6. 6.
    6 J. Hromkovič, Tradeoffs for language recognition on parallel computing models, Proc. 13th ICALP '86, Lecture Notes in Computer Science 226 (1986) 157–166.Google Scholar
  7. 7.
    7 K. Inoue, A. Ito, I. Takanami and H. Taniguchi, A space-hierarchy result on two-dimensional alternating Turing machines with only universal states, Inform. Sciences 35 (1985) 79–90.Google Scholar
  8. 8.
    8 K. Inoue, A. Ito, I. Takanami and H. Taniguchi, Two-dimensional alternating Turing machines with only universal states, Inform. and Control 55 (1982) 193–221.Google Scholar
  9. 9.
    9 K. Inoue, H. Matsuno, I. Takanami and H. Taniguchi, Alternating simple multihead finite automata, Theoret. Comp. Sci. 36 (1985) 291–308.Google Scholar
  10. 10.
    10 K. Inoue, I. Takanami and R. Vollmar, Alternating on-line Turing machines with only universal states and small space bounds, Theoret. Comp. Sci. 41 (1985) 331–339.Google Scholar
  11. 11.
    11 K.N.King, Alternating finite automata, Doctoral Dissertation, University of California, Berkeley.Google Scholar
  12. 12.
    12 K.N. King, Alternating multihead finite automata, Proc. 8th ICALP '81, Lecture Notes in Computer Science 115 (1981) 506–520.Google Scholar
  13. 13.
    13 R.L. Ladner, R.J. Lipton and L.J. Stockmeyer, Alternating pushdown and stack automata, SIAM J. Comput. 13 (1984) 135–155.Google Scholar
  14. 14.
    14 W.J. Paul, E.J. Prauss and R. Reischuk, On alternation, Acta Informatica 14 (1980) 243–255.Google Scholar
  15. 15.
    15 W.J. Paul and R. Reischuk, On alternation II., Acta Informatica 14 (1980) 391–403.Google Scholar
  16. 16.
    16 S. Sakurayama, H. Matsuno, K. Inoue, I. Takanami, H. Taniguchi, Alternating one-way multihead Turing machines with only universal states, The Transactions of the IECE of Japan, Vol. E 68, No.10 October 1985.Google Scholar
  17. 17.
    17 A.Slobodová, On the power of communication in alternating machines, submitted to MFCS '88.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Anna Slobodová
    • 1
  1. 1.Department of Theoretical CyberneticsComenius UniversityBratislavaCzechoslovakia

Personalised recommendations