Advertisement

Convergence of rows of the Pade table

  • P. R. Graves-Morris
Part I. Mathematical Theory of the Padé Approximants Method
Part of the Lecture Notes in Physics book series (LNP, volume 47)

Abstract

Some of the convergence theorems about rows of the Padé table of analytic functions are reviewed, especially Beardon's theorem and de Montessus' theorem. The progress on convergence theorems for the third row, the “poles out” theorem, and de Montessus' theorem for two variables are explained. Two conjectures about convergence of rows, one of which is a counterpart of the conjecture of Baker, Gammel and Wills for diagonal sequences, are boldly made.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “The Essentials of Pade Approximants”, G.A. Baker, Jr., Academic Press N.Y. (1975).Google Scholar
  2. 2.
    G.A. Baker, J.L. Gammel and J.G. Wills, J. Math. Anal. Appl. 31 147 (1970).CrossRefGoogle Scholar
  3. 3.
    G.A. Baker, J. Math. Anal. Appl. 43 498 (1973).CrossRefGoogle Scholar
  4. 4.
    A.F. Beardon, J. Math. Anal. Appl. 21 469 (1968).Google Scholar
  5. 5.
    O. Perron, “Die Lehre von den Kettenbrüchen”, Vol.II p.270, B.G. Teubner (1957).Google Scholar
  6. 6.
    R. de Montessus de Ballore, Bull. Soc. Math. France 30 28 (1902).Google Scholar
  7. 7.
    E.B. Saff, J. Approx. Theory 6 63 (1972).CrossRefGoogle Scholar
  8. 8.
    W.B. Gragg in “Padé Approximants and Their Applications”, Academic Press (London) p.117 (1973).Google Scholar
  9. 9.
    J.S.R. Chisholm and P.R. Graves-Morris, Proc. Roy. Soc. A 342 341 (1975).Google Scholar
  10. 10.
    G.A. Baker in “The Padé Approximant in Theoretical Physics” eds. G.A. Baker, Jr. and J.L. Gammel, Academic Press, N.Y. (1970).Google Scholar
  11. 11.
    G.A. Baker and P.R. Graves-Morris, “Convergence of Rows of the Padé Table”, Brookhaven preprint AMD 675 (1974).Google Scholar
  12. 12.
    R. Hughes Jones, “General Rational Approximants in N-Variables”, Kent preprint (1973).Google Scholar
  13. 13.
    P.R. Graves-Morris and R. Hughes Jones, “An Analysis of Two Variable Rational Approximants”, Brookhaven preprint AMD 674 (1974).Google Scholar
  14. 14.
    L. Hörmander, “An Introduction to Complex Analysis in Several Variables”, D. van Nostrand, p.161 (1966).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • P. R. Graves-Morris
    • 1
  1. 1.Mathematical InstituteUniversity of Kent CanterburyCanterbury, KentEngland

Personalised recommendations