Skip to main content

Fundamental limitations on search algorithms: Evolutionary computing in perspective

  • Chapter
  • First Online:
Computer Science Today

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1000))

Abstract

The past twenty years has seen a rapid growth of interest in stochastic search algorithms, particularly those inspired by natural processes in physics and biology. Impressive results have been demonstrated on complex practical optimisation problems and related search applications taken from a variety of fields, but the theoretical understanding of these algorithms remains weak. This results partly from the insufficient attention that has been paid to results showing certain fundamental limitations on universal search algorithms, including the so-called “No Free Lunch” Theorem. This paper extends these results and draws out some of their implications for the design of search algorithms, and for the construction of useful representations. The resulting insights focus attention on tailoring algorithms and representations to particular problem classes by exploiting domain knowledge. This highlights the fundamental importance of gaining a better theoretical grasp of the ways in which such knowledge may be systematically exploited as a major research agenda for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • T. Bäck and H.-P. Schwefel, 1993. An overview of evolutionary algorithms for parameter optimisation. Evolutionary Computation, 1(1):1–24.

    Google Scholar 

  • J. E. Baker, 1987. Reducing bias and inefficiency in the selection algorithm. In Proceedings of the Second International Conference on Genetic Algorithms. Lawrence Erlbaum Associates (Hillsdale).

    Google Scholar 

  • R. A. Caruana and J. D. Schaffer, 1988. Representation and hidden bias: Gray vs. binary coding for genetic algorithms. In Proceedings of the 5th International Conference on Machine Learning. Morgan Kaufmann (Los Altos).

    Google Scholar 

  • R. Das and D. Whitley, 1991. The only challenging problems are deceptive: Global search by solving order-1 hyperplanes. In Proceedings of the Fourth International Conference on Genetic Algorithms, pages 166–173. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • Y. Davidor, 1990. Epistasis variance: Suitability of a representation to genetic algorithms. Complex Systems, 4:369–383.

    Google Scholar 

  • L. Davis, 1991. Handbook of Genetic Algorithms. Van Nostrand Reinhold (New York).

    Google Scholar 

  • L. J. Fogel, A. J. Owens, and M. J. Walsh, 1966. Artificial Intelligence Through Simulated Evolution. Wiley Publishing (New York).

    Google Scholar 

  • F. Glover, 1986. Future paths for integer programming and links to artificial-intelligence. Computers and Operations Research, 13(5):533–549.

    Article  Google Scholar 

  • D. E. Goldberg, 1989a. Genetic algorithms and Walsh functions: Part I, a gentle introduction. Complex Systems, 3:129–152.

    MathSciNet  Google Scholar 

  • D. E. Goldberg, 1989b. Genetic algorithms and Walsh functions: Part II, deception and its analysis. Complex Systems, 3:153–171.

    MathSciNet  Google Scholar 

  • D. E. Goldberg, 1989c. Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley (Reading, Mass).

    Google Scholar 

  • J. J. Grefenstette and J. E. Baker, 1989. How genetic algorithms work: A critical look at intrinsic parallelism. In Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • J. J. Grefenstette, 1992. Deception considered harmful. In Foundations of Genetic Algorithms 2, pages 75–91. Morgan Kaufmann (San Mateo, CA).

    Google Scholar 

  • W. Hart, T. Kammeyer, and R. Belew, 1994. The role of development in genetic algorithms. To appear in Foundations of Genetic Algorithms 3.

    Google Scholar 

  • J. H. Holland, 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press (Ann Arbor).

    Google Scholar 

  • T. Jones, 1994. A model of landscapes. Technical Report, Santa Fe Institute.

    Google Scholar 

  • S. A. Kauffman, 1993. The origins of order: self-organization and selection in evolution. Oxford University Press (New York).

    Google Scholar 

  • S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, 1983. Optimisation by simulated annealing. Science, 220(4598):671–680.

    Google Scholar 

  • J. R. Koza, 1991. Evolving a computer to generate random numbers using the genetic programming paradigm. In Proceedings of the Fourth International Conference on Genetic Algorithms, pages 37–44. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • S. J. Louis and G. J. E. Rawlins, 1993. Pareto optimality, GA-easiness and deception. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann (San Mateo, CA).

    Google Scholar 

  • A. J. Mason, 1993. Crossover non-linearity ratios and the genetic algorithm: Escaping the blinkers of schema processing and intrinsic parallelism. Technical Report Report No. 535b, School of Engineering, University of Auckland.

    Google Scholar 

  • N. J. Radcliffe and P. D. Surry, 1994a. Fitness variance of formae and performance prediction. Technical report, To appear in Foundations of Genetic Algorithms 3.

    Google Scholar 

  • N. J. Radcliffe and P. D. Surry, 1994b. Formal memetic algorithms. In Terence C. Fogarty, editor, Evolutionary Computing: AISB Workshop, pages 1–16. Springer-Verlag, Lecture Notes in Computer Science 865.

    Google Scholar 

  • N. J. Radcliffe, 1991. Equivalence class analysis of genetic algorithms. Complex Systems, 5(2):183–205.

    Google Scholar 

  • N. J. Radcliffe, 1992. Non-linear genetic representations. In R. Männer and B. Manderick, editors, Parallel Problem Solving from Nature 2, pages 259–268. Elsevier Science Publishers/North Holland (Amsterdam).

    Google Scholar 

  • N. J. Radcliffe, 1994. The algebra of genetic algorithms. Annals of Maths and Artificial Intelligence, 10:339–384.

    Article  Google Scholar 

  • I. Rechenberg, 1973. Evolutionstrategie—Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog (Stuttgart).

    Google Scholar 

  • I. Rechenberg, 1984. The evolution strategy. a mathematical model of darwinian evolution. In E. Frehland, editor, Synergetics—from Microscopic to Macroscopic Order, pages 122–132. Springer-Verlag (New York).

    Google Scholar 

  • J. Shapiro, A. Prügel-Bennett, and M. Rattray, 1994. A statistical mechanical formulation of the dynamics of genetic algorithms. In T. C. Fogarty, editor, Evolutionary Computing: AISB Workshop, pages 17–27. Springer-Verlag, Lecture Notes in Computer Science 865.

    Google Scholar 

  • P, J. M. van Laarhoven and E. H. L. Aarts, 1989. Simulated Annealing: Theory and Applications. D. Reidel Publishing Company.

    Google Scholar 

  • M. D. Vose and G. E. Liepins, 1991. Schema disruption. In Proceedings of the Fourth International Conference on Genetic Algorithms, pages 237–243. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • M. D. Vose, 1992. Modelling simple genetic algorithms. In D. Whitley, editor, Foundations of Genetic Algorithms 2. Morgan Kaufmann (San Mateo, CA).

    Google Scholar 

  • D. Whitley, 1989. The GENITOR algorithm and selection pressure: Why rank-based allocation of reprodutive trials is best. In Proceedings of the Third International Conference on Genetic Algorithms, pages 116–121. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • L. D. Whitley, 1991. Fundamental principles of deception. In G. J. E. Rawlins, editor, Foundations of Genetic Algorithms, pages 221–241. Morgan Kaufmann (San Mateo).

    Google Scholar 

  • D. H. Wolpert and W. G. Macready, 1995. No free lunch theorems for search. Technical Report SFI-TR-95-02-010, Santa Fe Institute.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan van Leeuwen

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Radcliffe, N.J., Surry, P.D. (1995). Fundamental limitations on search algorithms: Evolutionary computing in perspective. In: van Leeuwen, J. (eds) Computer Science Today. Lecture Notes in Computer Science, vol 1000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015249

Download citation

  • DOI: https://doi.org/10.1007/BFb0015249

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60105-0

  • Online ISBN: 978-3-540-49435-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics