Skip to main content

Numerical solution of the stationary navier-stokes equations by finite element methods

  • Elements Finis
  • Conference paper
  • First Online:
Computing Methods in Applied Sciences and Engineering Part 1

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 10))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bramble, J.H. and S.R. Hilbert. Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970), 112–124.

    Article  Google Scholar 

  2. Ciarlet, P.G. and P-A. RAVIART. General Lagrange and Hermite interpolation in ℝn with applications to finite element methods. Arch. Rat. Mech. Anal. 46, (1972), 177–199.

    Article  Google Scholar 

  3. Ciarlet, P.G. and P-A. Raviart. The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. "The mathematical fundations of the finite element method with applications to partial differential equations" A.K. Aziz ed. Academic press, New-York (1972), 409–474.

    Google Scholar 

  4. Crouzeix, M. and P-A. Raviart. Conforming and non-conforming finite element methods for solving the stationary Stokes equations (I, II). To appear in RAIRO, Série Mathématiques.

    Google Scholar 

  5. Fortin, M. Calcul numérique des écoulements des fluides de Bingham et des fluides newtoniens incompressibles par la méthode des éléments finis. Thèse, Paris, 1972.

    Google Scholar 

  6. Fortin, M., R. Peyret et R. Temam. Résolution numérique des équations de Navier-Stokes pour un fluide incompressible. Journal de mécanique, 10, 3 (1971), 357–390.

    Google Scholar 

  7. Grisvard P. Alternative de Fredholm relative au problème de Dirichlet dans un polygone ou un polyhèdre. Boll. Un. Mat. Ital. 5 (1972), 132–164.

    Google Scholar 

  8. Kondratiev V.A. Boundary problems for elliptic equations with conical or angular points. Trans. Moscow Math. Soc. 16 (1967), 227–313.

    Google Scholar 

  9. Ladyzhenskaya, O.A. The mathematical theory of viscous incompressible flow. Gordon and Breach, 1963.

    Google Scholar 

  10. Lions, J.L. Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, 1969.

    Google Scholar 

  11. Scott, R. Finite element techniques for curved boundaries. Ph. D. Dissertation, Mass. Inst. Tech. (1973).

    Google Scholar 

  12. Strang, G. and G.J. Fix An analysis of the finite element method, Prentice Hall (1973).

    Google Scholar 

  13. Taylor C. and P. Hood A numerical solution of the Navier-Stokes equations using the finite element technique, Computers and Fluids, 1 (1973), 73–100.

    Article  Google Scholar 

  14. Zlamal M. Curved elements in the finite element method. SIAM J. Numer. Anal. 10 (1973), 229–240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Glowinski J. L. Lions

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jamet, P., Raviart, P.A. (1974). Numerical solution of the stationary navier-stokes equations by finite element methods. In: Glowinski, R., Lions, J.L. (eds) Computing Methods in Applied Sciences and Engineering Part 1. Lecture Notes in Computer Science, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015177

Download citation

  • DOI: https://doi.org/10.1007/BFb0015177

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06768-9

  • Online ISBN: 978-3-540-38374-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics