Description algebra

  • H. B. M. Jonkers
Part II The Design Language COLD
Part of the Lecture Notes in Computer Science book series (LNCS, volume 394)


Description Algebra is a many-sorted algebra, containing operators on (module) descriptions such as import, export, renaming and unification. The algebra incorporates a special scheme of dealing with name clashes in module composition by means of origins and origin unification. A complete definition of the algebra is given and its properties are discussed. The algebra is the basis of the modularisation constructs of the design language COLD-K, but the approach as such as independent of COLD-K.


Origin Variable Complete Lattice Parameterised Origin Module Algebra Module Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.A. BERGSTRA, J. HEERING, P. KLINT, ASF—An Algebraic Specification Formalism, CWI Report CS-R8705 (1987).Google Scholar
  2. [2]
    J.A. BERGSTRA, J. HEERING, P. KLINT, Module Algebra, CWI Report CS-R8617 (1986).Google Scholar
  3. [3]
    L.M.G. FEIJS, H.B.M. JONKERS, C.P.J. KOYMANS, G.R. RENARDEL DE LAVALETTE, Formal Definition of the Design Language COLD-K, Preliminary Edition, Technical Report, ESPRIT project 432, Doc.Nr. METEOR/t7/PRLE/7 (1987).Google Scholar
  4. [4]
    L.M.G. FEIJS, H.B.M. JONKERS, J.H. OBBINK, C.P.J. KOYMANS, G.R. RENARDEL DE LAVALETTE, P.H. RODENBURG, A Survey of the Design Language COLD, in: ESPRIT '86: Results and Achievements, Elsevier Science Publishers (1987), 631–644.Google Scholar
  5. [5]
    H.B.M JONKERS, An Introduction to COLD-K, this volume.Google Scholar
  6. [6]
    C.P.J. KOYMANS, G.R. RENARDEL DE LAVALETTE, The Logic MPL ω, this volume.Google Scholar
  7. [7]
    J.A. ROBINSON, A Machine-Oriented Logic Based on the Resolution Principle, Journal of the ACM 12 (1965), 23–41.CrossRefGoogle Scholar
  8. [8]
    M. WIRSING, Structured Algebraic Specifications: a Kernel Language, Habilitation thesis, Technische Universität München (1983).Google Scholar
  9. [9]
    M. WIRSING, P. PEPPER, H. PARTSCH, W. DOSCH, M. BROY, On Hierarchies of Abstract Data Types, Acta Informatica 20 (1983), 1–33.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • H. B. M. Jonkers
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations