Semantics of nondeterministic and noncontinuous constructs

  • M. Broy
  • R. Gnatz
  • M. Wirsing
IV. Special Language Considerations And Formal Tools
Part of the Lecture Notes in Computer Science book series (LNCS, volume 69)


The semantics of the nondeterministic and noncontinuous constructs of the descriptive and applicative parts of the wide spectrum language CIP-L is given by defining both, a "breadth-function", characterizing the sets of possible values of ambiguous expressions, and a "definedness-predicate", indicating for such expressions whether all possible evaluations lead to defined values. With the help of the Egli-Milner ordering ambiguous, recursive functions are defined as fixpoints of functionals.

Using these concepts the meanings of quantifiers, ambiguous functions and expressions are based on a mathematical structure satisfying the axioms of two-valued classical logic and set theory.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /Ackermann 24/.
    W. Ackermann: Die Widerspruchsfreiheit des Auswahlaxioms. Göttinger Wiss. Nachrichten, Math.-Phys. Klasse, 246–250, 1924Google Scholar
  2. /ADJ 76/.
    J. A. Goguen, J. W. Thatcher, E. G. Wagner: An Initial Algebra Approach to the Specification, Correctness and Implementation of Abstract Data Types. IBM Research Report RC — 6487, 1976Google Scholar
  3. /Arnold, Nivat 77/.
    A. Arnold, M. Nivat: Non Deterministic Recursiv Schemes. Fundamentals of Computation Theory. Poznan 1977. Lecture Notes in Computer Science 56, 12–21, 1977Google Scholar
  4. /Arnold 78/.
    A. Arnold: Schémas de programmes récursifs non déterministes avec appel "synchrone". Laboratoire de Calcul, Université des Sciences et Techniques de Lille, Publication NO 105, 1978Google Scholar
  5. /Bauer et al. 77/
    F. L. Bauer, H. Wössner, H. Partsch, P. Pepper: Algorithmische Sprachen. Vorlesungsskriptum, Technische Universität München 1977, Kap. 1Google Scholar
  6. /Bauer et al. 78/
    F. L. Bauer, M. Broy, R. Gnatz, W. Hesse, B. Krieg-Brückner H. Partsch, P. Pepper, H. Wössner: Towards a Wide Spectrum Language to Support Program Specification and Program Development. SIGPLAN Notices 13 (12), 15–24 (1978). See also this volume.Google Scholar
  7. /Bauer 78/.
    F. L. Bauer: Prealgorithmic Formulations by Means of Choice and Determination. In: this volume.Google Scholar
  8. /Burstall, Goguen 77/.
    R. M. Burstall, J. A. Goguen: Putting Theories Together to Make Specifications. Proc. of the Int. Joint Conf. on Artificial Intelligence 1977Google Scholar
  9. /de Bakker 76/.
    J. W. de Bakker: Semantics and Termination of Nondeterministic Recursive Programs. 3rd International Colloquium on Automata, Languages and Programming, Edinburg, 1976Google Scholar
  10. /de Bakker 77/.
    J. W. de Bakker: Semantics of Infinite Processes using generalized trees. Math. Foundations of Computer Sciences 1977, Tatrànska Lomnica. Lecture Notes in Computer Sciences 53, 240–247, 1977Google Scholar
  11. /Dijkstra 75/.
    E. W. Dijkstra: Guarded Commands, Nondeterminacy and Formal Derivation of Programs. CACM 18, 453–457, 1975Google Scholar
  12. /Floyd 67/.
    R. W. Floyd: Nondeterministic Algorithms, JACM 14, 636–644, 1967Google Scholar
  13. /Guttag 75/.
    J. V. Guttag: The Specification and Application to Programming of Abstract Data Types. Ph. D. Th., Univ. of Toronto, Dept. Comp. Sci., Rep. CSRG — 59, 1975Google Scholar
  14. /Hennessy, Ashcroft 76/.
    M. Hennessy, E. A. Aschroft: The Semantics of Nondeterminism. 3rd International Colloquium on Automata, Languages and Programming, Edinburg 1976Google Scholar
  15. /Hilbert 23/.
    D. Hilbert: Die longischen Grundlagen der Mathematik. Math. Ann. 88, 151–165, 1923Google Scholar
  16. /Hilbert 27/.
    D. Hilbert: Die Grundlagen der Mathematik. Abh. math. Seminar d. Hamburger Universität VI, Heft 1/2.Google Scholar
  17. /Jech 73/.
    T. J. Jech: The Axiom of Choice. North-Holland, Amsterdam, 68–71, 1973Google Scholar
  18. /Kleene 52/.
    S. C. Kleene: Introduction to Metamathematics. North-Holland, Amsterdam 1952Google Scholar
  19. /Kreisel, Krivine 67/.
    G. Kreisel, J. L. Krivine: Elements de logique mathématique. Dunod, Paris 1967Google Scholar
  20. /Krivine 71/.
    J. L. Krivine: Introduction to Axiomatic Set Theory. Reidel, Dordrecht 1971Google Scholar
  21. /Liskov, Zilles 75/.
    B. Liskov, S. Zilles: Specification Techniques for Data Abstraction. IEEE Trans. on Software Eng. 1:1, 7–18, 1975Google Scholar
  22. /Manna 74/.
    Z. Manna: Mathematical Theory of Computation. McGraw-Hill, New York 1974Google Scholar
  23. /McCarthy 62/.
    J. McCarthy: A Basis for a Mathematical Theory of Computation. P. Braffort, D. Hirschberg (eds.) Computer Programming and Formal Systems. North-Holland, Amsterdam 1963Google Scholar
  24. /Milner 73/.
    R. Milner: Processes: A Mathematical Model of Computing Agents. Logic Colloquium 73, North-Holland, Amsterdam 1973Google Scholar
  25. /Partsch, Broy 78/.
    H. Partsch, M. Broy: Examples for Change of Types and Object Structures. In: this volume.Google Scholar
  26. /Pepper 78/.
    P. Pepper: A Study on Transformational Semantics. In: this volume.Google Scholar
  27. /Plotkin 76/.
    G. D. Plotkin: A Powerdomain Construction. SIAM J. on Computing 5, 452–486, 1976Google Scholar
  28. /Schütte 67/.
    K. Schütte: Einführung in die mathematische Logik. Vorlesungsausarbeitung, Universität München 1967Google Scholar
  29. /Scott 76/.
    D. Scott: Continuous Lattices. Toposes, Algebraic Geometry and Logic. F. W. Lawvere, Ed., Springer-Verlag Notes, vol. 274, Berlin 1970Google Scholar
  30. /Shoenfield 67/.
    J. R. Shoenfield: Mathematical Logic. Addison-Wesley, Reading, Massachusetts 1967Google Scholar
  31. /Smyth 78/.
    M. B. Smyth: Power Domains. J. of Computer and System Sciences 16, 23–36, 1978Google Scholar
  32. /Zermelo 04/.
    E. Zermelo: Beweis, daß jede Menge wohlgeordnet werde kann. Math. Ann. 59, 514–516, 1904Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • M. Broy
    • 1
  • R. Gnatz
    • 1
  • M. Wirsing
    • 1
  1. 1.Institut für Informatik der Technischen UniversitätMünchen 2

Personalised recommendations