The CGAL kernel: A basis for geometric computation

  • Andreas Fabri
  • Geert-Jan Giezeman
  • Lutz Kettner
  • Stefan Schirra
  • Sven Schönherr
Submitted Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1148)


A large part of the Cgal-project is devoted to the development of a Computational Geometry Algorithms Library, written in C++. We discuss design issues concerning the Cgal-kernel which is the basis for the library and hence for all geometric computation in Cgal.


Computational Geometry Representation Object Geometric Object Number Type Geometric Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ANSI/ISO C++ Standards Committee Working Paper for Draft Proposed International Standard for Information Systems — Programming Language C++. Doc No: X3J16/95-0087, WG21/N0687. April 1995. Google Scholar
  2. 2.
    F. Avnaim. C++GAL: A C++ library for geometric algorithms. 1994.Google Scholar
  3. 3.
    F. Avnaim, J.D. Boissonnat, O. Devillers, F.P. Preparata, and M. Yvinec. Evaluating signs of determinants using single precision arithmetic. Technical Report 2306, INRIA Sophia-Antipolis, 1994.Google Scholar
  4. 4.
    M.O. Benouamer, P. Jaillon, D. Michelucci, and J-M. Moreau. A “lazy” solution to imprecision in computational geometry. In Proc. of the 5th Canadian Conference on Computational Geometry, pages 73–78, 1993.Google Scholar
  5. 5.
    T.K. Dey, K. Sugihara, and C.L. Bajaj. Delaunay traingulations in three dimensions with finite precision arithmetic. Computer Aided Geometric Design, 9:457–470, 1992.CrossRefGoogle Scholar
  6. 6.
    D. Dobkin and D. Silver. Applied computational geometry: Towards robust solutions of basic problems. Journal of Computer and System Sciences, 40:70–87, 1990.CrossRefMathSciNetGoogle Scholar
  7. 7.
    J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics: Principles and Practice. Addison-Wesley, Reading, MA, 1990.Google Scholar
  8. 8.
    S. Fortune. Stable maintenance of point-set triangulations in two dimensions. In Proceedings of the 30th IEEE Symposium on Foundations of Computer Sience, pages 494–499, 1989.Google Scholar
  9. 9.
    S. Fortune and C. van Wyk. Efficient exact arithmetic for computational geometry. In Proc. of the 9th ACM Symp. on Computational Geometry, pages 163–172, 1993.Google Scholar
  10. 10.
    S. Fortune and C. van Wyk. LN user manual. 1993.Google Scholar
  11. 11.
    G.-J. Giezeman. PlaGeo, a library for planar geometry, and SpaGeo, a library for spatial geometry. 1994.Google Scholar
  12. 12.
    L. Guibas, D. Salesin, and J. Stolfi. Epsilon geometry: Building robust algorithms from imprecise computations. In Proc. of the 5th ACM Symp. on Computational Geometry, pages 208–217, 1989.Google Scholar
  13. 13.
    K. Mehlhorn and S. Näher. The implementation of geometric algorithms. In 13th World Computer Congress IFIP94, volume 1, pages 223–231. Elsevier Science B.V. North-Holland, Amsterdam, 1994.Google Scholar
  14. 14.
    K. Mehlhorn, S. Näher, T. Schilz, S. Schirra, R. Scidel, M. Seel, and C. Uhrig. Checking geometric programs or verification of geometric structures. Proceedings of 12th Annual ACM Symp. on Computational Geometry, pages 159–165, 1996.Google Scholar
  15. 15.
    V. Milenkovic. Verifiable implementations of geometric algorithms using finite precision arithmetic. Artificial Intelligence, 37:377–401, 1988.CrossRefGoogle Scholar
  16. 16.
    D.R. Musser, A. Saini. STL Tutorial and Reference Guide. Addison-Wesley, 1996.Google Scholar
  17. 17.
    S. Näher and C. Uhrig. The LEDA User Manual, Version R 3.2. Technical Report MPI-I-95-1-002, Max-Planck-Institut für Informatik, 1995.Google Scholar
  18. 18.
    B. Serpette, J. Vuillemin, and J.C. Hervé. BigNum, a portable and efficient package for arbitrary-precision arithmetic. Technical Report Research Report 2, Digital Paris Research Laboratory, 1989.Google Scholar
  19. 19.
    A. Stepanov, M. Lee. The Standard Template Library. July 1995.∼musser/stl.htmlGoogle Scholar
  20. 20.
    Ken Turkowski. Properties of surface-normal transformations. In Andrew S. Glassner, editor, Graphics Gems, pages 539–547. 1990.Google Scholar
  21. 21.
    C.K. Yap. Towards exact geometric computation. In Proc. of the 5th Canadian Conference on Computational Geometry, pages 405–419, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Andreas Fabri
    • 1
  • Geert-Jan Giezeman
    • 2
  • Lutz Kettner
    • 3
  • Stefan Schirra
    • 4
  • Sven Schönherr
    • 5
  1. 1.InriaSophia-Antipolis cedexFrance
  2. 2.Department of Computer ScienceUtrecht UniversityTB UtrechtThe Netherlands
  3. 3.Theoretical Computer ScienceETH ZürichZürichSwitzerland
  4. 4.Max-Planck-Institut für InformatikSaarbrückenGermany
  5. 5.Fachbereich Mathematik und InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations