Skip to main content

Inverse methods for Optical Tomography

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 687))

Abstract

We describe the main theoretical principles behind Time-resolved Optical Absorption and Scattering Tomography (TOAST). The problem is viewed as the optimisation of an error-norm derived from correlated statistics of the time-dependent photon intensity at the surface of an object. The field is compared with Electrical Impedance Tomography (EIT). Some inverse algorithms are suggested and one implemented in detail: a modified Newton-Raphson approach. Several regularisation schemes are described. Results are given for these schemes applied to several different data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science, 198, pp. 1264–1267, (1977).

    PubMed  Google Scholar 

  2. M. Cope and D.T. Delpy, “System for long term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination,” Med. Biol. Eng. Comput., 26, pp. 289–294, (1988).

    PubMed  Google Scholar 

  3. J.S. Wyatt, M. Cope, D.T. Delpy, S. Wray, and E.O.R. Reynolds, “Quantitation of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet, ii, pp. 1063–1066, (1986).

    Article  Google Scholar 

  4. G.A. Navarro and A.E. Profio, “Contrast in diaphanography of the breast,” Med. Phys., 15(2), pp. 181–187, (1988).

    Article  Google Scholar 

  5. S.R. Arridge, M. Cope, P. van der Zee, P.J. Hillson and D.T. Delpy, “Visualisation of the oxygenation state of brain and muscle in newborn infants by near infra-red transillumination”, In: Information Processing in Medical Imaging, Ed: S.L. Bacharach, pp. 155–176, (Dordrecht: Martinus Nijhoff, 1986)

    Google Scholar 

  6. S.R. Arridge, P. van der Zee, D.T. Delpy and M. Cope, “Aspects of clinical infra red absorption imaging,” In: The Formation, Handling, and Evaluation of Medical Images, Eds: A. Todd Pokropek and M. A. Viergever, NATO ASI series F, pp. 407–418 (Springer-Verlag, Heidelberg, 1992)

    Google Scholar 

  7. G. Jarry, S. Ghesquiere, J.M. Maarek, S. Debray, Bui-Mong-Hung and D. Laurent, “Imaging mammalian tissues and organs using laser collimated transillumination,” J. Biomed. Eng., 6, pp. 70–74 (1984)

    PubMed  Google Scholar 

  8. P.C. Jackson, P.H. Stevens, J.H. Smith, D. Kean, H. Key, P.N.T. Wells, “The development of a system for transillumination computed tomography,” Br. J. Rad., 60, pp. 375–380 (1987).

    Google Scholar 

  9. S.R. Arridge, P. van der Zee, M. Cope, D.T. Delpy., “Reconstruction methods for infrared absorption imaging”, Proc. SPIE, 1431, pp. 204–215 (1991)

    Article  Google Scholar 

  10. D.T. Delpy, M. Cope, P. van der Zee, S.R. Arridge, S. Wray and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. & Biol., 33, pp. 1433–1442 (1988)

    Google Scholar 

  11. B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufman, W. Levy, M. Young, P. Cohne, H. Yoshioka, R. Boretsky, “Comparison of timeresolved and unresolved measurements of deoxyhemoglobin in brain”, Proc. Nat. Acad. Sci. USA, 85, 4971–4975

    Google Scholar 

  12. B. Chance, M. Maris, J. Sorge, M.Z. Zhang, “A phase modulation system for dual wavelength difference spectroscopy of haemoglobin deoxygenation in tissue”, Proc. SPIE, 1204, pp. 481–491 (1990)

    Article  Google Scholar 

  13. J.R. Lakowicz, K. Berndt, “Frequency domain measurement of photon migration in tissues”, Chem. Phys. Lett., 166, 3, pp. 246–252 (1990)

    Article  Google Scholar 

  14. M.S. Patterson, J.D.Moulton, B.C. Wilson, B. Chance, “Applications of time resolved light scattering measurements to photodynamic therapy dosimetry”, Proc SPIE, 1203, pp. 62–75 (1990)

    Article  Google Scholar 

  15. S.R. Arridge, M.Cope, D.T. Delpy., “Theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis”, Physics in Medicine and Biology, 37, 1531–1560, (1992)

    Article  PubMed  Google Scholar 

  16. J. Haselgrove, J. Leigh, C. Yee, N-G Wang, M. Maris, B. Chance, “Monte Carlo and diffusion calculations of photon migration in non-infinite highly scattering media”, Proc. SPIE, 1431, 30–41 (1991)

    Article  Google Scholar 

  17. Y. Wang, J-H Chang, R. Aronson, R.L. Barbour, H.L. Graber, J. Lubowsky, “Imaging of scattering media by diffusion tomography: an iterative perturbation approach”, Proc. SPIE, 1641, (in press) (1992)

    Google Scholar 

  18. J.R. Singer, F.A. Grünbaum, P.D. Kohn, J.P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation”, Science, 248, 990–993 (1990)

    Google Scholar 

  19. F.A. Grünbaum, P.D.Kohn, G.A.Latham, J.R.Singer, J.P.Zubelli, “Diffuse tomography”, Proc. SPIE, 1431, pp. 232–238

    Google Scholar 

  20. S.R.Arridge, M. Schweiger, M.Hiraoka, D.T.Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption imaging”, SPIE, 1888, (in press), (1993).

    Google Scholar 

  21. R.A.J. Groenhuis, H.A. Ferwada, J.J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements (parts 1 and 2)”, Applied Optics, 28, 2456–2467 (1983)

    Google Scholar 

  22. R. Chandrasekhar, Radiation Transfer, (Clarendon Press, Oxford, 1950)

    Google Scholar 

  23. M.C. Case and P.F. Zweifel, Linear Transport Theory, (Addison-Wesley, New York, 1967)

    Google Scholar 

  24. M.S. Patterson, B.C. Wilson and D.R. Wyman, “The propagation of optical radiation in tissue 1: models of radiation transport and their application”, Lasers in Medical Science, 6, pp 155–168 (1991)

    Article  Google Scholar 

  25. H. Bremmer, “Random Volume Scattering”, Radio Science Journal of Research, 680 (9), pp. 967–981 (1964)

    Google Scholar 

  26. H.W. Lewis, “Multiple scattering in an infinite medium”, Physical Review, 78(3), pp. 526–529 (1950)

    Article  Google Scholar 

  27. B.C. Wilson and G. Adam, “A Monte-Carlo model for the absorption and flux distribution of light in tissue”,Med. Phys., 10, 824–830 (1983)

    Article  PubMed  Google Scholar 

  28. P. van der Zee, and D.T. Delpy, “Simulation of the point-spread function for light in tissue”, Adv. Exp. Med. & Biol, 215, 179–192 (1987)

    Google Scholar 

  29. S.T. Flock, M.S. Patterson, B.C. Wilson, D.R. Wyman, “Monte Carlo modelling of light propagation in highly scattering tissues — I: Model predictions and comparison with diffusion theory”, IEEE Trans. Biomed. Eng., 36(12), pp. 1162–1168 (1989)

    Article  Google Scholar 

  30. S.R.Arridge, M.Schweiger, M.Hiraoka, D.T.Delpy, “A finite element method for modelling photon transport in tissue”, Medical Physics, 1993 (in press)

    Google Scholar 

  31. M. Schweiger, S.R.Arridge, M.Hiraoka, D.T.Delpy, “Application of the Finite Element Method for the Forward problem in IR Absorption imaging”, SPIE, 1768, 97–108, (1992).

    Article  Google Scholar 

  32. J.G. Webster (ed), Electrical Impedance Tomography, (Adam Hilger, Bristol, 1990)

    Google Scholar 

  33. E.J. Woo, “Finite Element method and reconstruction algorithms in Electrical Impedance Tomography”, PhD thesis, University of Wisconsin-Madison (1990)

    Google Scholar 

  34. G. Eason, A. Veitch, R. Nisbet, F. Turnbull, “The theory of the backscattering of light by blood”, J. Phys. D, 11, 1463–1479, (1978)

    Article  Google Scholar 

  35. J.S.Bendat, A.G.Piersol, Random data: analysis and measurement procedures, (New York: Wiley, 1971)

    Google Scholar 

  36. T.J. Yorkey, J.G.Webster, W.J.Tompkins, “Comparing reconstruction techniques for Electrical Impedance Tomography”, IEEE Transactions on Biomedical Engineering., BME-34 (11), pp 843–852 (1987)

    Google Scholar 

  37. S.R. Arridge, M. Schweiger, D.T. Delpy, “Iterative reconstruction of near infra-red absorption images”, Proc. SPIE 1767, 372–383, (1992)

    Article  Google Scholar 

  38. D.C. Barber, B.H. Brown, “Recent developments in applied potential tomography”, In: Information processing in medical imaging Ed: S.L. Bacharach, 446–462, (Dordrecht: Martinus Nijhof, 1986)

    Google Scholar 

  39. A. Wexler, B. Fry, M.R.Neuman, “Impedance-computed tomography algorithm and system”, Appl. Optics, 24, 3985–3992 (1985)

    Google Scholar 

  40. R.V.Kohn, A.McKenney, “Numerical implementation of a variational method for electrical impedance tomography”, Inverse Problems, 6, 389–414 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Harrison H. Barrett A. F. Gmitro

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arridge, S.R., Schweiger, M. (1993). Inverse methods for Optical Tomography. In: Barrett, H.H., Gmitro, A.F. (eds) Information Processing in Medical Imaging. IPMI 1993. Lecture Notes in Computer Science, vol 687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0013793

Download citation

  • DOI: https://doi.org/10.1007/BFb0013793

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56800-1

  • Online ISBN: 978-3-540-47742-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics