Skip to main content

A feature space for derivatives of deformations

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 687))

Abstract

Applications of image deformation to averaging or the description of clinically interesting variation require that expert knowledge be concentrated into feature vectors of substantially lower dimension. For “images” of discrete, individually labelled points, or landmarks, the quasilinear procedures of the interpolating thin-plate spline conveniently exemplify these vectors as explicit deformations, and its energetics supplies a basis for the shape space they span. Recent work by our group extended these strengths of the thinplate spline to incorporate information about edge directions at landmarks, or edgels. This paper shows how linear combinations of up to four of these edgel specifications at a point can constrain a splined deformation to accord with arbitrary specifications of the affine derivative there. Any such constrained deformation may be computed in closed algebraic form as a singular perturbation of the underlying landmark-driven spline. Local scale change, local rotation, and unidimensional local dilatation follow as special cases. The resulting synthesis of the landmark-based and image-based approaches to analysis of deformations seems to us much more promising than either approach separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Bookstein, F. L. 1986. From medical imaging to the biometrics of form. Pp. 1–18 in S. L. Bacharach, ed., Proc. 9th Int. Conf. Information Processing in Medical Imaging. Martinus Nijhoff.

    Google Scholar 

  2. Bookstein, F. L. 1988. Toward a notion of feature extraction for plane mappings. Pp. 23–43 in C. de Graaf and M. Viergever, eds., Proc. 10th Int. Conf. Information Processing in Medical Imaging. Plenum.

    Google Scholar 

  3. Bookstein, F. L. 1991. Thin-plate splines and the atlas problem for biomedical images. Pp. 326–342 in A. Colchester and D. Hawkes, Image Processing in Medical Imaging. Lecture Notes in Computer Science, vol. 511. Springer Verlag.

    Google Scholar 

  4. Bookstein, F. L. 1986. Size and shape spaces for landmark data in two dimensions. Statistical Science 1:181–242.

    Google Scholar 

  5. Goodall, C. R. 1991. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society B53:285–339.

    Google Scholar 

  6. Bookstein, F. L. 1991. Morphometric Tools for Landmark Data. Cambridge University Press.

    Google Scholar 

  7. Thompson, D'A. W. 1917. On Growth and Form. Macmillan.

    Google Scholar 

  8. Bookstein, F. L. 1993. The morphometric synthesis: a brief history. To appear in S. Levin, ed., Lecture Notes in Biomathematics, vol. 100. Springer Verlag.

    Google Scholar 

  9. Hoffmann, W. 1957. Caricature from Leonardo to Picasso. John Calder.

    Google Scholar 

  10. Bookstein, F. L. 1978. The Measurement of Biological Shape and Shape Change. Lecture Notes in Biomathematics, vol. 24. Springer Verlag.

    Google Scholar 

  11. Timoshenko, S., and S. Woinowsky-Krieger. 1959. Theory of Plates and Shells, 2nd edition. McGraw-Hill.

    Google Scholar 

  12. Bookstein, F. L., and W. D. K. Green. 1992. A feature space for edgels in images with landmarks. Pp. 228–247 in D. Wilson and J. Wilson, eds., Mathematical Methods in Medical Imaging. S. P. I. E. Proceedings, vol. 1768.

    Google Scholar 

  13. Bookstein, F. L., and W. D. K. Green. 1992. Edge information at landmarks in medical images. Pp. 242–258 in R. Robb, ed., Visualization in Biomedical Computing 1992. S. P. I. E. Proceedings, vol. 1808.

    Google Scholar 

  14. Bookstein, F. L., and W. D. K. Green. 1993. A feature space for edgels in images with landmarks. Journal of Mathematical Imaging and Vision, to appear.

    Google Scholar 

  15. Bookstein, F. L., and W. D. K. Green. 1992. Edge Information at Landmarks in Medical Images. Videotape, 26 minutes.

    Google Scholar 

  16. Terzopoulos, D. 1983. Multilevel computational processes for visual surface reconstruction. Computer Vision, Graphics, and Image Processing 24:52–96.

    Google Scholar 

  17. Kass, M., A. Witkin, and D. Terzopoulos. 1987. Snakes: active contour models. International Journal of Computer Vision 1:321–331.

    Article  Google Scholar 

  18. Grenander, U., Y. Chow, and D. Keenan. 1991. Hands: A Pattern-Theoretic Study of Biological Shapes. Springer Verlag.

    Google Scholar 

  19. Amit, Y., U. Grenander and M. Piccioni. 1991. Structural image restoration through deformable templates. J. American Statistical Association 86:376–387.

    Google Scholar 

  20. Grenander, U., and M. Miller. 1992. Representations of knowledge in complex systems.

    Google Scholar 

  21. Collins, D. L., T. Peters, W. Dai, A. Evans. 1992. Model-based segmentation of individual brain structures from MRI data. Pp. 10–23 in R. Robb, ed., Visualization in Biomedical Computing 1992. S. P. I. E. Proceedings, vol. 1808.

    Google Scholar 

  22. Bookstein, F. L. 1989. Principal warps: Thin-plate splines and the decomposition of deformations. I. E. E. E. Transactions on Pattern Analysis and Machine Intelligence 11:567–585.

    Article  Google Scholar 

  23. Duchon, J. 1976. Interpolation des fonctions de deux variables suivant la principe de la flexion des plaques minces. RAIRO Analyse Numérique 10:5–12.

    Google Scholar 

  24. Meinguet, J. 1979. Multivariate interpolation at arbitrary points made simple. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 30:292–304.

    Article  Google Scholar 

  25. Rao, C. R. 1973. Linear Statistical Inference and Its Applications, 2nd edition, p. 33. Wiley.

    Google Scholar 

  26. Timoshenko and Woinowsky-Krieger [11], p. 287–289.

    Google Scholar 

  27. Bookstein, F. L., and W. D. K. Green. Limiting forms of the thin-plate spline. Manuscript.

    Google Scholar 

  28. ter Haar Romeny, B., L. Florack, J. Koenderink, and M. Viergever. 1991. Scale-space: its natural operators and differential invariants. Pp. 239–255 in A. Colchester and D. Hawkes, Image Processing in Medical Imaging. Lecture Notes in Computer Science, vol. 511. Springer Verlag.

    Google Scholar 

  29. Whitaker, Ross T., and S. Pizer. 1991. A Multi-Scale Approach to Nonuniform Diffusion. Technical report TR91-040, Department of Computer Science, University of North Carolina at Chapel Hill.

    Google Scholar 

  30. Bookstein, F. L. 1990. Four metrics for image variation. Pp. 227–240 in D. Ortendahl and J. Llacer, eds., Proc. 11th Int. Conf. Information Processing in Medical Imaging. Progress in Clinical and Biological Research, vol. 363. Wiley-Liss.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Harrison H. Barrett A. F. Gmitro

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bookstein, F.L., Green, W.D.K. (1993). A feature space for derivatives of deformations. In: Barrett, H.H., Gmitro, A.F. (eds) Information Processing in Medical Imaging. IPMI 1993. Lecture Notes in Computer Science, vol 687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0013777

Download citation

  • DOI: https://doi.org/10.1007/BFb0013777

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56800-1

  • Online ISBN: 978-3-540-47742-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics