The weyl computer algebra substrate

  • Richard Zippel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 722)


Weyl is a new type of computer algebra substrate that extends an existing, object oriented programming language with symbolic computing mechanisms. Rather than layering a new language on top of an existing one, Weyl behaves like a powerful subroutine library, but takes heavy advantage of the ability to overload primitive arithmetic operations in the base language. In addition to the usual objects manipulated in computer algebra systems (polynomial, rational functions, matrices, etc.), domains (e.g., Z, Q[x, y, z]) are also first class objects in Weyl.


Computer Algebra Computer Algebra System Domain Type Class Hierarchy Algebraic Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith, Implementing Mathematics with the Nuprl Proof Development System, Prentice-Hall, Englewood Cliffs, NJ, 1986.Google Scholar
  2. 2.
    C. Dicrescenzo and D. Duval, Algebraic extensions and algebraic closure in scratchpad ii, in ISSAC '88, P. Gianni, ed., vol. 358 of Lecture Notes in Computer Science, Berlin-Heidelberg-New York, 1988, Springer-Verlag, p. ??Google Scholar
  3. 3.
    J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK User's Guide, SIAM Publications, Philadelphia, PA, 1978.Google Scholar
  4. 4.
    A. C. Hearn, Reduce 3 user's manual, tech. rep., The RAND Corp., Santa Monica, CA, 1986.Google Scholar
  5. 5.
    R. D. Jenks and R. S. Sutor, AXIOM: The Scientific Computation System, Springer-Verlag, New York and NAG, Ltd. Oxford, 1992.Google Scholar
  6. 6.
    Maple Group, Maple, Waterloo, Canada, 1987.Google Scholar
  7. 7.
    D. A. McAllester, Ontic: A Knowledge Representation System for Mathematics, MIT Press, Cambridge, MA, 1987.Google Scholar
  8. 8.
    C. B. Moler, Matlab user's guide, Tech. Report CS81-1, Dept. of Computer Science, University of New Mexico, Albuquerque, NM, 1980.Google Scholar
  9. 9.
    B. T. Smith, J. M. Boyle, Y. Ikebe, V. C. Klema, and C. B. Moler, Matrix Eigensystem Routines: EISPACK Guide, Springer-Verlag, New York, NY, second ed., 1976.Google Scholar
  10. 10.
    G. L. Steele Jr., Common Lisp, The Language, Digital Press, Burlington, MA, second ed., 1990.Google Scholar
  11. 11.
    Symbolics, Inc., MACSYMA Reference Manual, Burlington, MA, 14th ed., 1989.Google Scholar
  12. 12.
    S. Wolfram, Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley, Redwood City, CA, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Richard Zippel
    • 1
  1. 1.Department of Computer ScienceCornell UniversityIthaca

Personalised recommendations