Finite automata and rational languages an introduction

  • Jean Berstel
Mathematical Foundations Of The Theory Of Automata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 386)


Rational Expression Regular Expression Finite Automaton Rational Subset Deterministic Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Aho, J. Hopcroft, J. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.Google Scholar
  2. [2]
    V. Amar, G. Putzolu, Generalizations of regular events, Inform. Contr.8 (1965), 56–63.CrossRefGoogle Scholar
  3. [3]
    J. M. Autebert, Languages algébriques, Masson, 1987.Google Scholar
  4. [4]
    G. Berry, R. Sethi, From regular expressions to deterministic automata, Theoret. Comput. Sci.48 (1986), 117–126.CrossRefGoogle Scholar
  5. [5]
    J. Brzozowski, Derivatives of regular expressions, J. Assoc. Comput. Mach.11 (1964), 481–494.Google Scholar
  6. [6]
    J. Conway, Regular Algebra and Finite Machines, Chapman and Hall, 1971.Google Scholar
  7. [7]
    S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press, 1974.Google Scholar
  8. [8]
    S. Eilenberg, M. P. Schützenberger, Rational sets in commutative monoids, J. Algebra13 (1969), 173–191.CrossRefGoogle Scholar
  9. [9]
    S. C. Kleene, Representation of events in nerve nets and finite automata, in: C. Shannon, J. McCarthy (eds), Automata Studies, Princeton University Press, 1956, 3–41.Google Scholar
  10. [10]
    R. McNaugthon, H. Yamada, Regular expressions and state graphs for automata, IRE Trans. on Electronic ComputersEC-9:1, 1960, 39–47.Google Scholar
  11. [11]
    C. Mead, L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980.Google Scholar
  12. [12]
    E. F. Moore, Gedanken experiments on sequential machines, in: C. Shannon, J. McCarthy (eds), Automata Studies, Princeton Univ. Press, 1956, 129–153.Google Scholar
  13. [13]
    D. Perrin, Finite automata, Handbook of Theoretical Computer Science, North-Holland, (in press).Google Scholar
  14. [14]
    D. Perrin, J. Sakarovitch, Automates finis, Journées scientifiques et prix UAP, Edition scientifiques de l'UAP, vol. 1, Paris, 1988.Google Scholar
  15. [15]
    M. Pelletier, J. Sakarovitch, Easy multiplications II. Extensions of rational semigroups, Techn. Report 88-63, LITP, Paris.Google Scholar
  16. [16]
    M. O. Rabin, D. Scott, Finite automata and their decision problem, IBM J. Res. Devel.3, 1959, 114–125.Google Scholar
  17. [17]
    J. Sakarovitch, Easy multiplications I. The realm of Kleene's theorem, Inf. Comput.74, 1987, 173–197.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Jean Berstel
    • 1
  1. 1.LITP Université Pierre et Marie CurieParisFrance

Personalised recommendations