Skip to main content

The map between Heisenberg-Weyl and Euclidean optics is comatic

  • Conference paper
  • First Online:
Lie Methods in Optics II

Part of the book series: Lecture Notes in Physics ((LNP,volume 352))

Abstract

The mathematics of coherent states is essentially a translation of oscillator quantum mechanics to the paraxial model of optics, and is based on the Heisenberg-Weyl algebra and group. On the other hand, “4a” optics is based on the three-dimensional Euclidean algebra and corresponding group. We show here that a global map between the two may be established. It is, in fact, third-order Seidel-Lie coma. Spherical and circular-comatic aberrations are a proper subgroup of the group of all canonical transformations of phase space, that can be subject to unique quantization and wavization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Man'ko and K.B. Wolf, The influence of spherical aberration on gaussian beam propagation. In Lie Methods in Optics, ed. by J. Sánchez-Mondragón and K.B. Wolf. Lecture Notes in Physics, Vol. 250 (Springer Verlag, Heidelberg, 1986); K.B. Wolf and V.I. Man'ko, ibid. [in Russian]. Trudy Fiz. Inst. P.N. Lebedev, Vol. 176 (Nauka, Moscow, 1986); translated in Classical and Quantum Effects in Electrodynamics, ed. by A.A. Komar (Nova Science Publ., Commack N.Y., 1988), pp. 169–200.

    Google Scholar 

  2. R. Glauber, Coherent states of the quantum oscillator, Phys. Rev. Lett. 10, 84 (1963).

    Article  Google Scholar 

  3. See for example, M.M. Nieto, What are squeezed states really like? In Frontiers of Nonequilibrium Statistical Physics, ed. by G.T. Moore and M.O. Scully (Plenum Publ. Corp, New York, 1986), pp. 287–307.

    Google Scholar 

  4. V.V. Dodonov, E.V. Kurmyshev, and V.I. Man'ko Exact bounds for the uncertainty relation in correlated coherent states [in Russian]. In Group-theoretical Methods in Physics, Proceedings of the Zvenigorod Seminar, November 1979. (Nauka, Moscow, 1980).

    Google Scholar 

  5. V.V. Dodonov, E.V. Kurmyshev, and V.I. Man'ko Generalized uncertainty relation and correlated coherent states. Phys. Lett. A79, 150–152 (1980).

    Google Scholar 

  6. A.J. Dragt, E. Forest, and K.B. Wolf, Foundations of a Lie algebraic theory of geometrical optics. In Lie Methods in Optics, op. cit. ed. by

    Google Scholar 

  7. K.B. Wolf, The Heisenberg-Weyl ring in quantum mechanics. In Group Theory and its Applications, Vol. III, ed. by E.M. Loebl (Academic Press, New York, 1975), pp. 189–247.

    Google Scholar 

  8. H. Raszillier and W. Schempp, Fourier optics from the perspective of the Heisenberg group. In Lie Methods in Optics, op. cit. op. cit. ed. by

    Google Scholar 

  9. J.A. Arnaud, Beam and Fiber Optics (Academic Press, New York, 1976).

    Google Scholar 

  10. K.B. Wolf, Elements of Euclidean Optics. In this volume.

    Google Scholar 

  11. K.B. Wolf, Symmetry in Lie optics, Ann. Phys. 172, 1–25 (1986).

    Article  Google Scholar 

  12. N.M. Atakishiyev, W. Lassner, and K.B. Wolf, The relativistic coma aberration. I. Geometrical optics. Comunicaciones Técnicas LIMAS No. 509 (1988); ib. II. Helmholtz wave optics. No. 517 (1988), to appear in Journal of Mathematical Physics.

    Google Scholar 

  13. T. Sekiguchi and K.B. Wolf, The Hamiltonian formulation of optics, Am. J. Phys. 55, 830–835 (1987).

    Article  Google Scholar 

  14. K.B. Wolf, Nonlinearity in aberration optics. In Symmetries and Nonlinear Phenomena, Proceedings of the International School on Applied Mathematics, Centro Internacional de Fisica, Paipa, Colombia, 22–26 Feb. 1988, ed. by D. Levi and P. Winternitz, CIF Series Vol. 9 (World Scientific, Singapore, 1989).

    Google Scholar 

  15. O.N. Stavroudis, The Optics of Rays, Wavefronts, and Caustics (Academic Press, New York, 1972); Eq. (II-19) on p. 26.

    Google Scholar 

  16. S. Steinberg, Lie series, Lie transformations, and their applications. In Lie Methods in Optics, op. cit. ed. by pp. 45–103.

    Google Scholar 

  17. K.B. Wolf, A Euclidean algebra of Hamiltonian observables in Lie optics, Kinam 6, 141–156 (1985).

    Google Scholar 

  18. A.J. Dragt, A Lie algebraic theory of geometrical optics and optical aberrations. J. Opt. Soc. Am. 72, 372–379 (1982).

    Google Scholar 

  19. J.R. Klauder, Wave theory of imaging systems. In Lie methods in optics, op. cit. ed. by pp. 183–191; Eqs. (11) on p. 186.

    Google Scholar 

  20. F. Leyvraz and T.H. Seligman, Sequences of point transformations and linear canonical transformations in classical and quantum mechanics. Preprint IFUNAM (1988), to appear in J. Phys.

    Google Scholar 

  21. I.S. Gradshteyn and I.M. Ryzhik, Tables of integrals, sums, series and products (Academic Press, New York, 1975).

    Google Scholar 

  22. S. Steinberg and K.B. Wolf, Invariant inner products on spaces of solutions of the Klein-Gordon and Helmholtz equations, J. Math. Phys. 22, 1660–1663 (1981).

    Article  Google Scholar 

  23. J. Durnin, J.J. Miceli, and J.H. Eberly, Diffraction-free beams. Phys. Rev. Lett. 58, 1499–1501 (1987); J. Durnin, Exact Solutions for nondiffracting beams. I. The scalar theory. J. Opt. Soc. Am. A 4, 651–654 (1987).

    Article  PubMed  Google Scholar 

  24. K.B. Wolf, Diffraction-free beams remain diffraction-free under all paraxial optical transformations. Phys. Rev. Lett. 60, 757–759 (1988).

    Article  PubMed  Google Scholar 

  25. D. Basu and K.B. Wolf, The unitary irreducible representations of SL(2,R) in all subgroup reductions. J. Math. Phys. 23, 189–205 (1982).

    Article  Google Scholar 

  26. M.J. Bastiaans, Local-Frequency Description of Optical Signals and Systems, Eindhoven University of Technology report 88-E-191 (April, 1988); lectures delivered at the First International School and Workshop on Photonics (Oaxtepec, June 28–July 8, 1988).

    Google Scholar 

Download references

Authors

Editor information

Kurt Bernardo Wolf

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Man'ko, V.I., Wolf, K.B. (1989). The map between Heisenberg-Weyl and Euclidean optics is comatic. In: Wolf, K.B. (eds) Lie Methods in Optics II. Lecture Notes in Physics, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0012748

Download citation

  • DOI: https://doi.org/10.1007/BFb0012748

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52123-5

  • Online ISBN: 978-3-540-46878-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics