Skip to main content

Elements of euclidean optics

  • Conference paper
  • First Online:
Lie Methods in Optics II

Part of the book series: Lecture Notes in Physics ((LNP,volume 352))

Abstract

Euclidean optics are models of the manifold of rays and wavefronts in terms of coset spaces of the Euclidean group. One realization of this construction is the geometric model of Hamilton's optical phase space. Helmholtz optics is a second Euclidean model examined here. A wavization procedure is given to map the former one on the latter. Noneuclidean transformations of the manifold of rays are provided by Lorentz boosts that produce a global “4a” comatic aberration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Hermann, Vector Bundles in Mathematical Physics (W.A. Benjamin, New York, 1970).

    Google Scholar 

  2. R. Gilmore, Lie groups, Lie Algebras, and Some of their Applications (J. Wiley & Sons, New York, 1974).

    Google Scholar 

  3. S. Steinberg, Lie series, Lie transformations, and their applications, in Lie Methods in Optics, Proceedings of the Cifmo-cio Workshop (León, México, January 1985). Ed. by J. Sánchez-Mondragón and K.B. Wolf, Lecture Notes in Physics, Vol. 250 (Springer-Verlag, Heidelberg, 1986).

    Google Scholar 

  4. K.B. Wolf and T.H. Seligman, Harmonic analysis on bilateral classes, SIAM J. Math. Anal. 11, 1068–1074 (1980).

    Article  Google Scholar 

  5. H. Flanders, Differential Forms with Applications to the Physical Sciences (Academic Press, New York, 1963).

    Google Scholar 

  6. K.B. Wolf, Symmetry in Lie Optics, Ann. Phys. 172, 1–25 (1986).

    Article  Google Scholar 

  7. T. Sekiguchi and K.B. Wolf, The Hamiltonian formulation of optics, Am. J. Phys. 55, 830–835 (1987).

    Article  Google Scholar 

  8. J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory, J. Opt. Soc. Am. A4, 651–654 (1987); J. Durnin, J.J. Miceli, and J.H. Eberly, Diffraction-free beams, Phys. Rev. Lett. 58, 1499–1501 (1987).

    Google Scholar 

  9. S. Steinberg and K.B. Wolf, Invariant inner products on spaces of solutions of the Klein-Gordon and Helmholtz equations, J. Math. Phys. 22, 1660–1663 (1981).

    Article  Google Scholar 

  10. M.J. Bastiaans, Local-Frequency Description of Optical Signals and Systems. Eindhoven University of Technology Report 88-E-191 (April 1988). Lectures delivered at the First International School and Workshop in Photonics, Oaxtepec, June 28–July 8, 1988.

    Google Scholar 

  11. H. Raszillier and W. Schempp, Fourier optics from the perspective of the Heisenberg group. In Lie Methods in Optics, op. cit.

    Google Scholar 

  12. K.B. Wolf, The Heisenberg-Weyl ring in quantum mechanics. In Group Theory and its Applications, Vol. 3, Ed. by E.M. Loebl (Academic Press, New York, 1975).

    Google Scholar 

  13. J.-M. Lévy-Leblond, Galilei group and Galilean invariance. In Group Theory and its Applications, Vol. 2, Ed. by E.M. Loebl (Academic Press, New York, 1971).

    Google Scholar 

  14. V. Guillemin and S. Sternberg, Symplectic Techniques in Physics (Cambridge University Press, 1984).

    Google Scholar 

  15. C.P. Boyer and K.B. Wolf, Deformations of inhomogeneous classical Lie algebras to the algebras of the linear groups, J. Math. Phys 14, 1853–1859 (1973); K.B. Wolf and C.P. Boyer, The algebra and group deformations Im[SO(n) ⊗ SO(m)] ⇒ SO(n,m), Im[U(n) ⊗ U(m)] ⇒ U(n, m), and Im[Sp(n) ⊗ Sp(m)] ⇒ Sp(n, m), J. Math. Phys 15, 2096–2101 (1974).

    Article  Google Scholar 

  16. N.M. Atakishiyev, W. Lassner, and K.B. Wolf, The relativistic coma aberration. I. Geometrical optics. Comunicaciones Técnicas IIMAS No. 509 (1988). To appear in J. Math. Phys.

    Google Scholar 

  17. N.M. Atakishiyev, W. Lassner, and K.B. Wolf, The relativistic coma aberration. II. Helmholtz wave optics. Comunicaciones Técnicas IIMAS No. 517 (1988). To appear in J. Math. Phys.

    Google Scholar 

  18. A.J. Dragt, E. Forest, and K.B. Wolf, Foundations of a Lie algebraic theory of geometrical optics. In Lie Methods in Optics, op. cit.

    Google Scholar 

  19. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1975), Chapter ix.

    Google Scholar 

  20. E.P. Wigner, On unitary irreducible representations of the inhomogeneous Lorentz group, Ann. Math. 40, 149–204 (1939). See also E.P. Wigner, Relativistic invariance and quantum phenomena, Rev. Mod. Phys. 29, 255–268 (1957); D. Han, Y.S. Kim, and D. Son, Decomposition of Lorentz transformations, J. Math. Phys. 28, 2373–2378 (1987).

    MathSciNet  Google Scholar 

  21. F. Lur¢at, Quantum field theory and the dynamical role of spin, Physics 1, 95–100 (1964). cf. G.N. Fleming, The spin spectrum of an unstable particle, J. Math. Phys. 13, 626–637 (1974).

    Google Scholar 

  22. M. Toller, Three-dimensional Lorentz group and harmonic analysis of the scattering amplitude, N. Cimento 37, 631–657 (1965); ibid. An expansion of the scattering amplitude at vanishing four-momentum transfer using the representations of the Lorentz group, N. Cimento 53, 671–715 (1967).

    Google Scholar 

Download references

Authors

Editor information

Kurt Bernardo Wolf

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Wolf, K.B. (1989). Elements of euclidean optics. In: Wolf, K.B. (eds) Lie Methods in Optics II. Lecture Notes in Physics, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0012747

Download citation

  • DOI: https://doi.org/10.1007/BFb0012747

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52123-5

  • Online ISBN: 978-3-540-46878-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics