Skip to main content

Lie methods in optics: An assessment

  • Conference paper
  • First Online:
Lie Methods in Optics II

Part of the book series: Lecture Notes in Physics ((LNP,volume 352))

Abstract

Many important results have now been obtained in particle optics by means of the Lie algebraic methods. We compare these methods with older procedures based on the use of characteristic functions and attempt to bring out the advantages and shortcomings of the various approaches. In particular, we discuss the interrelations between aberration coefficients, concatenation, and the role of computer algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.-c. Ai and M. Szilagyi, Fifth-order relativistic aberration theory for electromagnetic focusing systems incluiding spherical cathode lenses, Optik 79, 33–40 (1988).

    Google Scholar 

  2. M. Berz, The method of power series tracking for the mathematical description of beam dynamics, Nucl. Instrum. Meth. Phys. Res. A 258, 431–436 (1987).

    Google Scholar 

  3. M. Berz, Differential algebraic description of beam dynamics to very high orders, Lawrence Berkeley Laboratory Report SSC-152 (1988).

    Google Scholar 

  4. M. Berz and H. Wollnik, The program Hamilton for the analytic solution of the equations of motion through fifth order, Nucl. Instrum. Meth. Phys. Res. A 258, 364–373 (1987).

    Google Scholar 

  5. M Berz, H.C. Hoffman and H. Wollnik, Cosy 5.0 —the fifth order code for corpuscular systems, Nucl. Instrum. Meth. Phys. Res. A 258, 402–406 (1987).

    Google Scholar 

  6. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1959; 6th ed., 1980).

    Google Scholar 

  7. L. de Broglie, Optique Electronique et Corpuslaire (Hermann, Paris, 1950).

    Google Scholar 

  8. W. Brouwer, The use of matrix algebra in geometrical optics. Dissertation, Delft (1957).

    Google Scholar 

  9. W. Brouwer, Matrix Methods in Optical Instrument Design (Benjamin, New York and Amsterdam, 1964).

    Google Scholar 

  10. H.A. Buchdahl, Optical Aberration Coefficients (Oxford University Press, Oxford, 1954 and Dover, New York, 1968).

    Google Scholar 

  11. H.A. Buchdahl, An Introduction to Hamiltonian Optics (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  12. O. Castaños, E. López-Moreno, and K.B. Wolf, Canonical transformations for paraxial wave optics, in Lie Methods in Optics, J. Sánchez-Mondragón and K.B. Wolf, Eds. (Springer-Verlag, Berlin, 1986), pp. 159–182.

    Google Scholar 

  13. A.V. Crewe and D. Kopf, Limitations of sextupole correctors, Optik 56, 391–399 (1980).

    Google Scholar 

  14. A.J. Dragt, Lie algebraic theory of geometrical optics and optical aberrations, J. Opt. Soc. Am. 72, 372–379 (1982).

    Google Scholar 

  15. A.J. Dragt, Elementary and advanced Lie algebraic methods with applications to accelerator design, electron microscopes and light optics, Nucl. Instrum. Meth. Phys. Res. A 258, 339–354 (1987).

    Google Scholar 

  16. A.J. Dragt and E. Forest, Lie algebraic theory of charged-particle optics and electron microscopes, Advances in Electronics and Electron Physics 67, 65–120 (1986).

    Google Scholar 

  17. A.J. Dragt, E. Forest and K.B. Wolf, Foundations of a Lie algebraic theory of geometrical optics, in Lie Methods in Optics, J. Sánchez-Mondragón and K.B. Wolf, Eds. (Springer-Verlag, Berlin, 1986), pp. 105–157.

    Google Scholar 

  18. A.J. Dragt, F. Neri, G. Rangarajan, D.R. Douglas, L.M. Healy, and R.D. Ryne, Lie algebraic treatment of linear and nonlinear beam dynamics, Ann. Rev. Nucl. Part. Sci. 38, 455–496 (1988).

    Article  Google Scholar 

  19. J. Focke, Die Realisierung der Herzbergerschen Theorie der Fehler fünfter Ordnung in rotationssymmetrischen Systemen mit einer Anwendung auf das Schmidtsche Spiegelteleskop, Jenaer Jahrbuch 89–119 (1951).

    Google Scholar 

  20. J. Focke, Higher order aberration theory, Progress in Optics 4, 1–36 (1965).

    Google Scholar 

  21. A. Foster, Correction of aperture aberrations in magnetic lens spectrometers. Thesis, London (1968).

    Google Scholar 

  22. W. Glaser, Grundlagen der Electronenoptik (Springer-Verlag, Vienna, 1952).

    Google Scholar 

  23. P.W. Hawkes, The geometrical aberrations of general electron optical systems II. The primary (third order) aberrations of orthogonal systems, and the secondary (fifth order) aberrations of round systems, Phil. Trans. Roy. Soc. London A 257, 523–552 (1965).

    Google Scholar 

  24. P.W. Hawkes, Quadrupole Optics (Springer-Verlag, Berlin, 1966).

    Google Scholar 

  25. P.W. Hawkes, Asymptotic aberration coefficients, magnification and object position in electron optics, Optik 27, 287–304 (1968).

    Google Scholar 

  26. P.W. Hawkes, Asymptotic aberration integrals for round lenses, Optik 31, 213–219 (1970).

    Google Scholar 

  27. P.W. Hawkes, Asymptotic aberration integrals for quadrupole systems, Optik 31, 302–314 (1970).

    Google Scholar 

  28. P.W. Hawkes, The addition of round electron lens aberrations, Optik 31, 592–599 (1970).

    Google Scholar 

  29. P.W. Hawkes, The addition of quadrupole aberrations, Optik 32, 5060 (1970).

    Google Scholar 

  30. P.W. Hawkes, Computer calculation of formulae for electron lens aberration coefficients, Optik 48, 29–51 (1977).

    Google Scholar 

  31. P.W. Hawkes, Lie algebraic theory of geometrical optics and optical aberrations: a comment, J. Opt. Soc. Am. 73, 122 (1983).

    Google Scholar 

  32. P.W. Hawkes, Aberration structure, Nucl. Instrum. Meth. Phys. Res. A 258, 462–465 (1987).

    Google Scholar 

  33. P.W. Hawkes and E. Kasper, Principles of Electron Optics, 2 vols. (Academic Press, London and San Diego, 1989).

    Google Scholar 

  34. A.C.S. van Heel, Calcul des aberrations du cinquième ordre et projects tenant compte de ces aberrations, in La Théorie des Images Optiques, P. Fleury, Ed. (Editions Revue d'Optique, Paris, 1949), pp. 32–67.

    Google Scholar 

  35. A.C.S. van Heel, Inleiding in de Optica (Martinus Nijhoff, The Hague, 1964).

    Google Scholar 

  36. Y. Li and W.-x. Ni, Relativistic fifth order geometrical aberrations of a focusing system, Optik 78, 45–47 (1988).

    Google Scholar 

  37. H. Marx, Theorie der geometrisch-optischen Bildfehler, in Handbuch der Physik, S. Flügge, Ed. (Springer, Berlin & New York, 1967), Vol. 29, Optische Instrumente, pp. 68–191.

    Google Scholar 

  38. P. Meads, The theory of aberrations of quadrupole focusing arrays. Thesis, University of California (1963); UCRL-10807.

    Google Scholar 

  39. R. Meinel and S. Thiem, A complete set of independent asymptotic aberration coefficients for deflection magnets, Optik 74, 1–2 (1986).

    Google Scholar 

  40. R. J. Regis, The modern development of Hamiltonian optics, Progress in Optics 1, 1–29 (1961).

    Google Scholar 

  41. H. Rose, Über die Berechnung der Bildfehler elektronenoptischer Systeme mit gerader Achse, Optik 27, 466–474 and 497–514 (1968).

    Google Scholar 

  42. H. Rose, Der Zusammenhang der Bildfehler-Koeffizienten mit den Entwicklungs-Koeffizienten des Eikonals, Optik 28, 462–274 (1968/9).

    Google Scholar 

  43. H. Rose, Correction of aperture aberrations in magnetic systems with threefold symmetry, Nucl. Instr. Meth. 187, 187–199 (1981).

    Article  Google Scholar 

  44. H. Rose, Hamiltonian magnetic optics, Nucl. Instrum. Meth. Phys. Res. A 258, 374–406 (1987).

    Google Scholar 

  45. H. Rose and U. Petri, Zur systematischen Berechnung elektronenoptischer Bildfehler, Optik 33, 151–165 (1971).

    Google Scholar 

  46. J. Sänchez-Mondragón and K.B. Wolf, Eds., Lie Methods in Optics, (Springer-Verlag, Berlin, 1986); Lecture Notes in Physics Vol. 250.

    Google Scholar 

  47. W. Schempp, Analog radar signal design and digital signal processing — a Heisenberg nilpotent Lie group approach, in Lie Methods in Optics, J. Sánchez-Mondragón and K.B. Wolf, Eds. (Springer-Verlag, Berlin, 1986), pp. 1–27.

    Google Scholar 

  48. T. Smith, The changes in aberrations when the object and stop are moved, Trans. Opt. Soc. London 23, 311–322 (1921/2).

    Article  Google Scholar 

  49. T. Smith, The addition of aberrations, Trans. Opt. Soc. London 25, 177–199 (1923/4).

    Article  Google Scholar 

  50. T. Soma, Relativistic aberration formulas for combined electricmagnetic focusing-deflection system, Optik 49, 255–262 (1977).

    Google Scholar 

  51. S. Steinberg, Lie series, Lie transformations, and their applications, in Lie Methods in Optics, J. Sánchez-Mondragón and K.B. Wolf, Eds. (Springer-Verlag, Berlin, 1986), pp. 45–103.

    Google Scholar 

  52. W.G. Stephan, Practische Toepassingen op het Gebied der algebraische Optica. Dissertation, Delft (1947).

    Google Scholar 

  53. P.A. Sturrock, Perturbation characteristic functions and their application to electron optics, Proc. Roy. Soc. London A 210, 269–289 (1951).

    Google Scholar 

  54. P.A. Sturrock, Static and Dynamic Electron Optics (Cambridge University Press, Cambridge, 1955).

    Google Scholar 

  55. C.H.F. Velzel and J.L.F. de Meijere, Characteristic functions and the aberrations of symmetric optical systems. 1. Transverse aberrations when the eikonal is given. 11. Addition of aberrations, J. Opt. Soc. Am. A 5, 246–250 and 251–256 (1988).

    Google Scholar 

  56. J.L. Verster, On the use of gauzes in electron optics, Philips Res. Repts. 18, 465–605 (1963).

    Google Scholar 

  57. H. Wollnik, Optics of Charged Particles (Academic Press, Orlando & London, 1987).

    Google Scholar 

  58. H. Wollnik and M. Berz, Relations between elements of transfer matrices due to the condition of symplecticity, Nucl. Instrum. Meth. Phys. Res. A 238, 127–140 (1985).

    Google Scholar 

Download references

Authors

Editor information

Kurt Bernardo Wolf

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Hawkes, P.W. (1989). Lie methods in optics: An assessment. In: Wolf, K.B. (eds) Lie Methods in Optics II. Lecture Notes in Physics, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0012742

Download citation

  • DOI: https://doi.org/10.1007/BFb0012742

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52123-5

  • Online ISBN: 978-3-540-46878-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics