Skip to main content

New directions in percolation, including some possible applications of connectivity concepts to the real world

  • Percolation and Related Topics
  • Conference paper
  • First Online:
Book cover Disordered Systems and Localization

Part of the book series: Lecture Notes in Physics ((LNP,volume 149))

Abstract

This talk is designed to complement that of D. Stauffer; together both seek to review recent work in percolation theory that has taken place after completion of the two recent reviews by Stauffer (1979) and Essam (1980). Stauffer's talk focusses on new results concerning percolations clusters, while this talk concerns some less well understood topics, including possible applications of percolation to the real world. The organization of this talk is presented in the following outline. After presenting a word of philosophy, we shall describe several topics and exemplify each with a particular system:

John Simon Guggenheim Memorial Fellow., 1980–81.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Glauber, J. Math. Phys. 4, 294 (1963).

    Google Scholar 

  2. T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952); the identification of the upper marginal dimensionalityd+ = 6and the first expansions in(d+-d)were carried out in M. E. Fisher, Phys. Rev. Lett. 40, 1610 (1978).

    Google Scholar 

  3. G. Parisi and N. Sourlas, Phys. Rev. Lett. 46, 871 (1981); T. C. Lubensky and A. J. McKane, J. Phys. A 14, L157 (1981).

    Google Scholar 

  4. S. Kirkpatrick, AIP Conf. Proc. 40, 99 (1978).

    Google Scholar 

  5. G. Shlifer, W. Klein, P. J. Reynolds, and H. E. Stanley, J. Phys. A 12, L169 (1979).

    Google Scholar 

  6. The distinction between the Hausdorff-Besicovitch or ‘fractal’ dimensionality D = 2yh-d = γ/ν of the entire system and the fractal dimensionality D = yh = βδ/ν of the incipient infinite cluster was made clear by remarks of D. Stauffer, G. Harrison, G. Bishop, and W. Klein; it is described in H. E. Stanley, J. Phys. A 10, L211 (1977). The fractal dimension was first related to critical exponents in H. E. Stanley, R. J. Birgeneau, P. J. Reynolds, and J. F. Nicoll, J. Phys. C 9, L553 (1976). Recently, critical properties have been calculated very elegantly for various fractal lattices (see talk by A. Aharony in this conference; also Y. Gefen, B. Mandelbrot, and A. Aharony, Phys. Rev. Lett. 45, 855 (1980). A description of many objects with non-integer Hausdorff-Besicovitch dimensionality may be found in B. B. Mandelbrot, Fractals: Form, Chance, and Dimension (W. H. Freeman, San Francisco, 1977).

    Google Scholar 

  7. R. J. Birgeneau and H. E. Stanley, unpublished.

    Google Scholar 

  8. R. Pike and H. E. Stanley, J. Phys. A 14, L169 (1981).

    Google Scholar 

  9. A. Coniglio, unpublished.

    Google Scholar 

  10. A. Coniglio, Phys. Rev. Lett. 46, 250 (1981).

    Google Scholar 

  11. See, e.g., G. Deutcher, this conference; M. Lagües, R. Ober and C. Taupin, J. Phys. (Paris) 39, L487 (1978).

    Google Scholar 

  12. P. J. Flory, J. Am. Chem. Soc. 63, 3083, 3091, 3096 (1941); W. H. Stockmayer, J. Chem. Phys. 11, 45 (1943).

    Google Scholar 

  13. M. E. Fisher and J. W. Essam, J. Math. Phys. 2, 609 (1961); H. L. Frisch and J. M. Hammersley, J. Soc. Ind. Appl. Math. 11, 894 (1963); D. Stauffer, Chem. Soc. Faraday Trans. 72, 1354 (1976); P. G. de Gennes, J. Phys. (Paris) 36, 1049 (1976).

    Google Scholar 

  14. S. W. Haan and R. Zwanzig, J. Phys. A 10, 1547 (1977); T. Vicsek and J. Kertész, J. Phys. A 14, L31 (1981); E. T. Gawlinski and H. E. Stanley, “Continuum percolation in two dimensions: Monte Carlo tests of scaling and universality for non-interacting discs”, preprint submitted to J. Phys. A Lett; A. Geiger and H. E. Stanley, “Continuum percolation in three dimensions: Molecular dynamics tests of universality for interacting ST2 particles”, preprint.

    Google Scholar 

  15. A. Coniglio, H. E. Stanley and W. Klein, Phys. Rev. Lett. 42, 518 (1979); “Solvent effects on polymer gels: A statistical mechanical model” (preprint submitted to Phys. Rev. B).

    Google Scholar 

  16. T. Tanaka, G. Swislow and I Ohmine, Phys. Rev. Lett. 42, 1556 (1979).

    Google Scholar 

  17. T. W. Barrett, “Site-Bond Correlated-Percolation theory of polymer gelation applied to a polymer with preferential binding at two disparate sites”, preprint (submitted to Phys. Rev. Lett.). The CSK model has also been extended by A. E. Gonzales and S. Muto [J. Chem. Phys. 73, 4668 (1980)] to explain the phenomenon of crossing gelation curves observed by P. Ruiz-Azuara, T. Tanaka, A. Coniglio, H. E. Stanley and W. Klein, “Dependence of the gelation curve on solvent composition: Crossing points”, preprint submitted to J. Chem. Phys.

    Google Scholar 

  18. F. Delyon, B. Souillard, and D. Stauffer, “Percolatioe phase transition without appearance of an infinite network”, preprint submitted to J. Phys. A Lett. See also M. Aizenman, F. Delyon, and B. Souillard, J. Stat. Phys. 23, 267 (1980).

    Google Scholar 

  19. R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).

    Google Scholar 

  20. T. C. Lubensky and A. J. McKane, this Conference (poster session).

    Google Scholar 

  21. A. Coniglio and W. Klein, J. Phys. A 13, 2775 (1980).

    Google Scholar 

  22. H. Müller-Krumbhaar, Phys. Lett. A 50, 2708 (1974).

    Google Scholar 

  23. J. Roussenq, Thése, Université de Provence, 1980.

    Google Scholar 

  24. D. Stauffer, J. Phys. (Paris) 42, L99 (1981).

    Google Scholar 

  25. H. E. Stanley, J. Phys. A 12, L329 (1979). A more detailed description and development of the percolation picture, together with extensive comparison to experimental data, is in H. E. Stanley and J. Teixeira, J. Chem. Phys. 73, 3404 (1980). Detailed Monte Carlo calculations have been carried out by R. L. Blumberg, G. Shlifer and H. E. Stanley, J. Phys. A 13, L147 (1980), while renormalization group calculations have been performed by A. Gonzales and P. J. Reynolds, Phys. Lett. 80A, 357 (1980). Detailed network analysis of computer water is presented in A. Geiger, H. E. Stanley and R. L. Blumberg, “Connectivity studies of liquid water: Hydrogen bond networks and four-coordinated water molecules”, preprint. An elementary summary of the overall research thus far is presented in H. E. Stanley, J. Teixeira, A. Geiger, and R. L. Blumberg, Physics 106A, 260 (1981).

    Google Scholar 

  26. E.g., using no adjustable parameters, one finds agreement between the predictions of the binomial theorem (6), based on the assumption of random bond breaking, and the computer simulations of Geiger (Ref. 25) and also M. Mezei and D. L. Beveridge, J. Chem. Phys. 74, 622 (1981); W. L. Jorgensen, Chem. Phys. Lett. 70, 326 (1980); C. Pengali, M. Rao and B. J. Berne, Mol. Phys. 40, 661 (1980).

    Google Scholar 

  27. L. Bosio, J. Teixeira, and H. E. Stanley, Phys. Rev. Lett. 46, 597 (1981); see also the earlier work of R. W. Hendricks, P. G. Mardon and L. B. Shaffer, J. Chem. Phys. 61, 319 (1974).

    Google Scholar 

  28. G. D'Arrigo, G. Maisano, F. Mallamace, P. Migliardo and F. Wanderlingh, “Raman scattering and structure of normal and supercooled water”, preprint scheduled for J. Chem. Phys. 75 (1981); see also R. Bansil, J. L. Taafe, and J. Wiafe Akenten, “Raman spectroscopy of supercooled water”, preprint submitted to J. Chem. Phys.

    Google Scholar 

  29. In this context the word “continuum” means that the sites are not in two discrete states (as in bichromatic percolation), nor in 5 discrete states (as in polychromatic discrete percolation), but rather in a continuum of possible states. Since the term “polychromatic continuum percolation” is easily confused with the term continuum percolation used to describe systems whose elements are not constrained to the vertices of a lattice, we prefer the simpler and more descriptive designation “rainbow percolation”.

    Google Scholar 

  30. D. Bertolini, M. Cassettari, and G. Salvetti, “The dielectric relaxation time of supercooled water down to-21°C”, preprint.

    Google Scholar 

  31. C. A. Angell, “Supercooled Water”, preprint.

    Google Scholar 

  32. M. H. Brodsky, Solid State Commun. 36, 55 (1980).

    Google Scholar 

  33. Recent references on directed percolation include J. Kertész and T. Vicsek, J. Phys. C 13, L343 (1980); D. Dhar and M. Barma, J. Phys. A 14, Ll (1981); S. P. Obukhov, Physics 101A, 145 (1980); J. L. Cardy and R. L. Suger, J. Phys. A 13, L423 (1980); W. Kinzel and J. Yeomans, preprint; E. Domany and W. Kinzel, preprint; E. Domany and W. Kinzel, preprint; P. J. Reynolds, preprint; S. Redner, preprint; S. Redner and A. C. Brown, preprint.

    Google Scholar 

  34. Recent work on restricted valence percolation includes S. G. Whittington, K. M. Middlemiss, G. M. Torrie and D. S. Gaunt, J. Phys. A 13, 3707 (1980); R. Cherry and C. Domb, J. Phys. A 13, 1325 (1980); D. S. Gaunt, J. L. Martin, G. Ord, G. M. Torrie and S. G. Whittington, J. Phys. A 13, 1791 (1980).

    Google Scholar 

  35. Random-site random-bond percolation is analyzed by series expansions in P. Agrawal, S. Redner, P. J. Reynolds and H. E. Stanley, J. Phys. A 12, 2073 (1979) and by renormalization group in H. Nakanishi and P. J. Reynolds, Phys. Lett. 71A, 252 (1979).

    Google Scholar 

  36. The s-state hierarchy was proposed in R.B.Potts,Proc.Camb.Phil.Soc.48,106 (1952).

    Google Scholar 

  37. The n-vector hierarchy was proposed in H.E.Stanley,Phys.Rev.Lett.20,589 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Claudio Castellani Carlo Di Castro Luca Peliti

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Stanley, H.E. (1981). New directions in percolation, including some possible applications of connectivity concepts to the real world. In: Castellani, C., Di Castro, C., Peliti, L. (eds) Disordered Systems and Localization. Lecture Notes in Physics, vol 149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0012546

Download citation

  • DOI: https://doi.org/10.1007/BFb0012546

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11163-4

  • Online ISBN: 978-3-540-38636-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics