Advertisement

Anisotropy in the critical behavior of TTF-TCNQ and TSeF-TCNQ

  • D. Guidotti
  • P. M. Horn
  • E. M. Engler
V. Experimental Investigations on TTF-TCNQ and its Derivatives
Part of the Lecture Notes in Physics book series (LNP, volume 65)

Abstract

We present the results of a detailed study of the critical behavior in the a and b axis resistivity of TTF-TCNQ and TSeF-TCNQ. We find that in TTF-TCNQ, dρa/dT and dρb/dT diverge as T − Tc → 0+ with the same critical exponent while in TSeF-TCNQ, dρa/dT and dρb/dT diverge with different critical exponents. These results are compared with various models for the origin of the critical behavior in the resistivity.

Keywords

Electrical Resistivity Critical Exponent Critical Behavior Collective Mode Organic Conductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Denoyer, R. Comes, A. F. Garito and A. J. Heeger, Phys. Rev. Letters 35, 445 (1975).Google Scholar
  2. 2.
    R. Comes, S. M. Shapiro, G. Shirane, A. F. Garito and A. J. Heeger, Phys. Rev. Letters 35, 1518 (1975).Google Scholar
  3. 3.
    L. B. Coleman, M. J. Cohen, D. J. Sandman, F. G. Yamagishi, A. F. Garito and A. J. Heeger, Solid State Commun. 12, 1125 (1973)Google Scholar
  4. 3a.
    A. N. Block, J. P. Ferraris, D. O. Cowan and T. O. Poehler, Solid State Commun. 13, 753 (1973).Google Scholar
  5. 4.
    M. J. Cohen, L. B. Coleman, A. F. Garito and A. J. Heeger, Phys. Rev. B 13, 5111 (1976); S. Etemad, Phys. Rev. B 13, 2254 (1976).Google Scholar
  6. 5.
    P. M. Horn and D. Rimai, Phys. Rev. Letters 36, 8–9 (1976).Google Scholar
  7. 6.
    See for example, R. A. Craven and R. D. Parks, Phys. Rev. Lett. 31, 383 (1973) and G. T. Meaden, N. H. Sze and J. R. Johnston in Dynamical Aspects of Critical Phenomena, edited by J. I. Budnick and M. P. Kawatra (Gordon and Breach, New York, 1972), p. 315.Google Scholar
  8. 7.
    It is well known that the simple one electron form for the resistivity is not valid in one dimensional systems. See e.g., A. Madhukar and Morrel H. Cohen, preprint.Google Scholar
  9. 8.
    P. M. Horn and D. Guidotti, Phys. Rev. B, in press.Google Scholar
  10. 9.
    Y. Suezaki and H. Mori, Prog. Theor. Phys. 41, 1177 (1969); also see S. Takoda, Prog. Theor. Phys. 46, 15 (1971) and T. Kasuya and A. Kondo, Solid State Commun. 14, 249 (1974).Google Scholar
  11. 10.
    M. J. Cohen, L. B. Coleman, A. F. Garito and A. J. Heeger, Phys. Rev. B 10, 1298 (1974); D. B. Tanner, C. S. Jacobsen, A. F. Garito and A. J. Heeger, Phys. Rev. Lett. 33, 1559 (1974).Google Scholar
  12. 11.
    J. C. Phillips, preprint.Google Scholar
  13. 12.
    R. M. Herman, M. B. Solomon, G. De Pasquali and G. Stucky. Presented at the Conference on Organic Conductors and Semiconductors, Siófok, Hungary, 30 August–3 September 1976.Google Scholar
  14. 13.
    J. P. Pouget, S. Kanna and R. Comes; and C. Weyl, E. M. Engler, K. Beckgoard, G. Jehanno, S. Etemad. Presented at the Conference on Organic Conductors and Semiconductors, Siófok, Hungary, 30 August–3 September 1976.Google Scholar

Copyright information

© Akadémiai Kiadó 1977

Authors and Affiliations

  • D. Guidotti
    • 1
  • P. M. Horn
    • 1
  • E. M. Engler
    • 2
  1. 1.The Department of Physics and The James Franck InstituteThe University of ChicagoChicagoUSA
  2. 2.IBM Thomas J. Watson Research Center Yorktown HeightsNew YorkUSA

Personalised recommendations