The role of interchain coupling in linear conductors

  • T. M. Rice
  • P. A. Lee
  • R. A. Klemm
II. Quasi-One-Dimentional Models
Part of the Lecture Notes in Physics book series (LNP, volume 65)


Renormalization group methods are applied to a set of coupled linear chains in a model in which direct hopping between chains is excluded. Attention is focused on models in which intrachain interactions are repulsive. It is shown first for two chains and then for N chains that a repulsive δ-function intrachain interaction scales with decreasing temperature to the attractive fixed point. In the N-chain model this attractive fixed point is characterized by a charge density wave whose phase is coherent between chains. A variety of response functions, spin and charge density waves at wave vector 2k r (k F is the Fermi wave vector), the uniform magnetic susceptibility, excitonic response functions, and 4kF response functions are calculated numerically. A comparison is made to the behavior of TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane) at temperatures above 60 K.


Repulsive Interaction Single Chain Charge Density Wave Spin Density Wave Weak Coupling Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. A. Bychkov, L. P. Gor'kov and I. E. Dzyaloshinskii, Zh. Eksp. Teor. Fiz. 50, 738 (1966) [Sov. Phys.-JETP 23, 489 (1966)].Google Scholar
  2. 2.
    I. E. Dzyaloshinskii and A. I. Larkin, Zh. Eksp. Teor. Fiz. 61, 791 (1971) [Sov. Phys.-JETP 34, 422 (1972)].Google Scholar
  3. 3.
    N. Menyhárd and J. Sólyom, J. Low Temp. Phys. 12, 529 (1973); J. Sólyom, ibid. 12, 547 (1.973).Google Scholar
  4. 4.
    H. Fukuyama, T. M. Rice, C. M. Varma and B. I. Halperin., Phys. Rev. B10, 3775 (1974).Google Scholar
  5. 5.
    A. Luther and V. J. Emery, Phys. Rev. Lett. 33, 589 (1974).Google Scholar
  6. 6.
    P. A. Lee, Phys. Rev. Lett. 34, 1247 (1975); S.-T. Chui and P. A. Lee, Phys. Rev. Lett. 35, 315 (1975).Google Scholar
  7. 7.
    D. J. Scalapino, Y. Imry and P. Pincus, Phys. Rev. B11, 2042 (1975).Google Scholar
  8. 8.
    L. P. Gor'kov and I. E. Dzyaloshinskii, Zh. Eksp. Teor. Fiz. 67, 397 (1974) [Sov. Phys.-JETP 40, 198 (1975)].Google Scholar
  9. 9.
    L. Mihály and J. Sólyom (preprint).Google Scholar
  10. 10.
    J. B. Torrance, B. A. Scott and F. B. Kaufman, Sol. State Comm. 17, 1369 (1975); J. B. Torrance and B. P. Silverman, Bull. Am. Phys. Soc. 20, 498 (1975) and preprint.Google Scholar
  11. 11.
    V. E. Klymenko, V. Ya. Krivnov, A. A. Ovchinnikov, L. Z. Ukrainsky and A. F. Shvets, to be published.Google Scholar
  12. 12.
    P. A. Lee, T. M. Rice and R. A. Klemm, Phys. Rev. (in press).Google Scholar
  13. 13.
    R. Comes (this volume).Google Scholar
  14. 14.
    V. J. Emery, Phys. Rev. Lett. 37, 107 (1976).Google Scholar

Copyright information

© Akadémiai Kiadó 1977

Authors and Affiliations

  • T. M. Rice
    • 1
  • P. A. Lee
    • 1
  • R. A. Klemm
    • 2
    • 3
  1. 1.Bell Laboratories Murray Hill
  2. 2.Bell LaboratoriesMurray Hill
  3. 3.Stanford UniversityStanfordUSA

Personalised recommendations