Advertisement

On the Efetov-Larkin model of a strongly interacting one-dimensional system

  • M. Fowler
I. One Dimensional Models
Part of the Lecture Notes in Physics book series (LNP, volume 65)

Abstract

Efetov and Larkin have introduced a model Hamiltonian for a strongly interacting one-dimensional system, exactly soluble for a particular value of a coupling constant, and have demonstrated that the asymptotic behavior is the same as that of a long-wave boson Hamiltonian. Here we show that in the relevant energy range, their Hamiltonian can be transformed into such a long-wave Hamiltonian, over a range of values of the coupling.

Keywords

Correlation Function Critical Exponent Fermion Operator Boson Representation Luttinger Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. B. Efetov and A. I. Larkin, Correlation Functions in One Dimensional System with Strong Interaction, ZhETF 69, 764 (1975).Google Scholar
  2. 2.
    See e.g. B. M. McCoy, Phys. Rev. 173, 531 (1968); B. M. McCoy, E. Barouch and D. B. Abraham, Phys. Rev. A4, 2331 (1971).Google Scholar
  3. 3.
    K. B. Efetov and A. I. Larkin, ZhETF 66, 2290 (1974), Sov. Phys. JETP 39, 1129 (1974).Google Scholar
  4. 4.
    J. D. Johnson, S. Krinsky and B. M. McCoy, Phys. Rev. A8, 2526 (1973).Google Scholar
  5. 5.
    R. J. Baxter, Ann. Phys. (N. Y.) 70, 193 (1972).Google Scholar
  6. 6.
    A. Luther and I. Peschel, Phys. Rev. B12, 3908 (1975).Google Scholar
  7. 7.
    J. M. Luttinger, J. Math. Phys. 4, 1154 (1963); D. C. Mattis and E. H. Lieb, J. Math. Phys. 6, 304 (1965).Google Scholar
  8. 8.
    A. Luther and I. Peschel, Phys. Rev. B9, 2911 (1974); D. Mattis, J. Math. Phys. 15, 609 (1974).Google Scholar

Copyright information

© Akadémiai Kiadó 1977

Authors and Affiliations

  • M. Fowler
    • 1
  1. 1.Department of PhysicsUniversity of VirginiaCharlottesville

Personalised recommendations