Tidal Phenomena pp 345-377 | Cite as

# Tides of io

- 7 Citations
- 958 Downloads

## Abstract

Jupiter's satellite Io is the most active earth-like planetary body in the solar system with a surface heat flow of, at least, 2.5 W m^{−2}, a resurfacing rate of 1.3 cm a^{−1}, and, possibly, a self-sustained magnetic field. It is universally accepted that the activity is driven by tidal energy dissipated in Io's mantle. Tides with amplitudes two orders of magnitude larger than the lunar tides on Earth are raised on Io by Jupiter. Since Io rotates synchronously with its orbital revolution, substantial tidal deformation requires an eccentric orbit. The orbital eccentricity is maintained by the Laplace resonance between the inner Jovian satellites against the damping induced by tidal dissipation in Io's interior. Models of tidal dissipation assume a visco-elastic mantle rheology and require a fluid (outer) core to allow sufficiently strong tidal deformation. The mantle most likely is partially molten and there may be an asthenosphere or magmasphere underneath the lithosphere. The energy that is dissipated in Io is drawn from Jupiter's rotational energy and is transferred to Io's orbital energy before part of it is dissipated in the satellite. Tidal dissipation thus is a sink in the orbital energy balance and a source in the energy balance of the interior. The energy balances are coupled through the temperature dependent rheology parameters. Models of the thermal-orbital evolution indicate that a quasi-stationary high dissipation state is possible as well as oscillations of the thermal and orbital parameters. A magnetic field is unlikely in a quasi-stationary state. The time rate of change of orbit parameters such as the mean motion are constrained by astrometrical observation over the past 300 years. These data can be used to constrain the present tidal dissipation rate. These constraints indicate that the present heat flow is an order of magnitude larger than the present dissipation rate. A model of time dependent heat transfer with local hot spots in the mantle where melt is generated by viscous dissipation is proposed. This model may explain the gap between the present heat flow and the tidal dissipation rate.

## Keywords

Heat Flow Rayleigh Number Dissipation Rate Dynamo Action Galilean Satellite## Preview

Unable to display preview. Download preview PDF.

## References

- Alterman, Z., H. Jarosch, C. L. Pekeris. 1959. Oscillations of the Earth.
*Proc. R. Soc. London***A 252**: 80–95.Google Scholar - Anderson, J. D., W. L. Sjogren, and G. Schubert. 1996. Galileo gravity results and the internal structure of Io.
*Science***272**: 709–712.Google Scholar - Balachandar, S., D. A. Yuen, and D. Reuteler. 1993. Viscous and adiabatic heating effects in three-dimensional compressible convection at infinite Prandtl number.
*Phys. Fluids A***5**: 2938–2945.Google Scholar - Balachandar, S., D. A. Yuen, D. Reuteler, and G. Lauer. 1995. Viscous dissipation in three dimensional convection with temperature-dependent viscosity.
*Science***267**: 1150–1153.Google Scholar - Boehler, R. 1986. The phase diagram of iron to 430 kbar.
*Geophys. Res. Lett.***13**: 1153–1156.Google Scholar - Boehler, R. 1992. Melting of the Fe-FeO and the Fe-FeS systems at high pressure: Constraints on core temperature.
*Earth Planet. Sci. Lett.***111**: 217–227.Google Scholar - Burns, J. A. 1986. Some background about satellites. In: Satellites. pp. 1–38. J. A. Burns and M. S. Matthews (eds.). Univ. Arizona Press, Tucson.Google Scholar
- Busse, F. H. 1976. Generation of planetary magnetism by convection.
*Phys. Earth Planet. Int.***12**: 350–358.Google Scholar - Castaing, B., G. Gunaratne, F. Heslot, L. Kadanoff, S. Libchaber, S. Thomae, X.-Z. Wu, S. Zaleski, and G. Zanetti. 1982. Scaling of hard thermal turbulence in Rayleigh-Bénard convection.
*J. Fluid. Mech.***204**: 1–30.Google Scholar - Christensen, U. R. 1985. Thermal evolution models for the earth.
*J. geophys. Res.***90**: 2995–3007.Google Scholar - Fischer H. J., and T. Spohn. 1990. Thermal-orbital histories of viscoelastic models of Io (J1).
*Icarus***83**: 39–65.Google Scholar - Frank, L. A., W. R. Paterson, K. L. Ackerson, V. M. Vasyliunas, F. V. Coroniti, and S. J. Bolton. 1996. Plasma observations of Io with the Galileo spacecraft.
*Science***274**: 394–395.Google Scholar - Gaskell, R. W. and S. T. Synott. 1988. Large-scale topography of Io: Implications for internal structure and heat transfer.
*Geophys. Res. Lett.***15**: 581–584.Google Scholar - Hansen, U. and D. A. Yuen. 1990. Heat transport in strongly chaotic thermal convection. In:
*HTD-Vol 149, Heat Transfer in Earth Science Studies*. pp. 43–46. C. Carrigan and T. Y. Chu (eds.) American Society of Mechanical Engineers, Book No. G00543.Google Scholar - Johnson, T. V., D. L. Matson, D. L. Blaney, G. J. Veeder, and A. Davies.1995. Stealth plumes on Io.
*Geophys. Res. Lett.***22**: 3293–3296.Google Scholar - Kaula, W. M. 1964. Tidal dissipation by solid friction and the resulting orbital evolution.
*Rev. Geophys.***2**: 661–685.Google Scholar - Kivelson, M. G., K. K. Khurana, R. J. Walker, C. T. Russell, J. A. Linker, D. J. Southwood, and C. Polanskey. 1996. A magnetic signature on Io: Initial report from the Galileo magnetometer.
*Science***273**: 337–340.Google Scholar - Lieske J. H. 1987. Galilean satellite evolution: Observational evidence for secular changes in mean motions.
*Astron. Astrophys.***176**: 146–158.Google Scholar - Love, A. E. H. 1927. A treatise on the mathematical theory of elasticity. 4th Ed., Dover, New York. 643 pp.Google Scholar
- Malevsky, A. V. and D. A. Yuen. 1992. Strongly chaotic non-Newtonian mantle convection.
*Geophys. Astrophys. Fluid Dyn.***65**: 149–171.Google Scholar - Malhotra, R. 1991. Tidal Origin of the Laplace resonance and the resurfacing of Ganymede.
*Icarus***94**: 399–412.Google Scholar - McEwen, A. S., J. I. Lunine, and H. C. Carr. 1989. Dynamic geophysics on Io. 11-46. In: Time variable phenomena in the Jovian system. M. J. S. Belton, R. A. West, and J. Rahe (eds.) NASA SP-494.Google Scholar
- Neubauer, F. M. 1978. Possible strengths of dynamo magnetic fields of the Galilean satellites and of Titan.
*Geophys. Res. Lett.***5**: 905–908.Google Scholar - Peale S. J., P. Cassen, and R. T. Reynolds. 1979. Melting of Io by tidal dissipation.
*Science***203**: 892–894.Google Scholar - Platzman, G. W. 1984. Planetary energy balance for tidal dissipation.
*Rev. Geophys. Space Phys.***22**: 73–84.Google Scholar - Ross M. N., G. Schubert, T. Spohn, and R. W. Gaskell. 1990. Internal Structure of Io and the global distribution of its topography.
*Icarus***85**: 309–325.Google Scholar - Schubert, G., T. Spohn, and R. T. Reynolds. 1986. Thermal histories, compositions and internal structures of the moons of the solar system. 224–292. In: Satellites. J. A. Burns and M. S. Matthews (eds.). Univ. Arizona Press, Tucson.Google Scholar
- Schubert, G., M. N. Ross, D. J. Stevenson, and T. Spohn. 1988. Mercury's thermal history and the generation of its magnetic field. 429–460. In: Mercury. F. Vilas, C. R. Chapman, and M. S. Matthews (eds.). Univ. Arizona Press, Tucson.Google Scholar
- Segatz M., T. Spohn, M. N. Ross, and G. Schubert. 1988. Tidal Dissipation, surface heat flow, and figure of viscoelastic models of Io.
*Icarus***75**: 187–206.Google Scholar - Spohn T., Schubert G. 1982. Modes of mantle convection and the removal of heat from the Earth's interior.
*J. geophys. Res.***87**: 4682–4686.Google Scholar - Stacey, F. D. 1977. Physics of the Earth. 2ed. Wiley, New York. 414 pp.Google Scholar
- Stevenson D. J., T. Spohn, and G. Schubert. 1983. Magnetism and thermal evolution of the terrestrial planets.
*Icarus***54**: 466–489.Google Scholar - Takahashi, E. 1986. Melting of a dry peridotite KLB-1 up to 14 GPa: Implications on the origin of peridotitic upper mantle.
*J. geophys. Res.***91**: 9367–9382.Google Scholar - Takahashi, E. 1990. Speculations on the Archean mantle: Missing link between komatiite and depleted garnet peridotite.
*J. geophys. Res.***95**: 15941–15954.Google Scholar - Takeuchi, H., M. Saito, and N. Kobayashi. 1962. Statical deformations and free oscillations of a model Earth.
*J. geophys. Res.***67**: 1141–1154.Google Scholar - Tozer, D. 1965. Heat transfer and convection currents.
*Phil. Trans. R. Soc. London***A 258**: 252–271.Google Scholar - Usselman, T. M. 1975a. Experimental approach to the state of the core: Part 1. The liquidus relations of the Fe-Ni-S system from 30 to 100 kb.
*Am. J. Sci.***275**: 278–290.Google Scholar - Usselman, T. M. 1975b. Experimental approach to the state of the core: Part 2. Composition and thermal regime.
*Am. J. Sci.***275**: 291–303.Google Scholar - Veeder G. J., D. L. Matson, T. V. Johnson, D. L. Blaney, and J. D. Goguen.1994. Io's heat flow from infrared radiometry: 1983–1993.
*J. geophys. Res.***99**: 17095–17162.Google Scholar - Verhoogen, J. 1980. Energetics of the Earth. National Academy Press, Washington. 139 pp.Google Scholar
- Vincent, A. P., U. Hansen, D. A. Yuen, A. V. Malevsky, and S. E. Kroening. 1991. The origin of a characteristic frequency in hard thermal turbulence.
*Phys. Fluids.***A 3**: 2003–2006.Google Scholar - Webb, E. K. and D. J. Stevenson. 1987. Subsidence of topography on Io.
*Icarus***70**: 348–353.Google Scholar - Wieczerkowski, K. and D. Wolf. 1996. Viscoelastic tidal perturbations: Effects due to density contrasts.
*Annal. Geophys.***14, Suppl. I**: 102.Google Scholar - Wienbruch, U. and T. Spohn. 1995. A self sustained magnetic field on Io?
*Planet Space. Sci.***43**: 1045–1057.Google Scholar - Wyllie, P. J. 1988. Magma genesis, plate tectonics, and chemical differentiation of the Earth.
*Rev. Geophys.***26**: 370–404.Google Scholar - Yoder C.F. 1979. How tidal heating in Io drives the Galilean orbital resonance locks.
*Nature***279**: 767–770.Google Scholar - Yuen, D. A., U. Hansen, W. Zhao, A. P. Vincent, and A. V. Malevsky. 1993. Hard turbulent thermal convection and thermal evolution of the mantle.
*J. geophys. Res.***98**: 5355–5373.Google Scholar - Zschau, J. 1978. Tidal friction in the solid Earth: Loading tides versus body tides. In: Tidal Friction and the Earth's Rotation. 62–94. P. Brosche and J. Sündermann (eds.). Springer Verlag, Berlin.Google Scholar