Tidal tilt modification along an active fault

  • Malte Westerhaus
Tidally Induced Phenomena
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 66)


Inhomogeneous deformation in the vicinity of a lateral contrast between different poroelastic structures in the crust causes local tidal tilt disturbances. A number of model approaches have been published since more than 20 years in order to give a quantitative estimation of this effect which is known as ‘geologic effect’. Most of them correctly predict the general behaviour of tidal tilt modification near an elastic contrast but underestimate the large disturbances that have been observed experimentally. In principle, the geologic effect can be used to infer changes in the state of deformation with increasing tectonic stress. Several experiments have been conducted in earthquake prone areas in order to detect temporal variations of tidal tilt parameters related to seismotectonic events; the results, however, so far are inconclusive.

Tidal tilt observations along a western strand of the North-Anatolian Fault Zone, integrated within an interdisciplinary earthquake research project, reveal considerable deviations of the tidal tilt parameters from the response of a laterally homogeneous Earth. The most prominent temporal phenomenon during the years 1988 to 1994 are seasonal variations of the order of 8% with respect to the tidal tilt residual amplitudes. They are superimposed on a secular drift of the order of 5%, which starts or intensifies in the beginning of 1991. Both classes of signals are correlated with similar changes in independent observables like microseismic activity, the traveltimes of longitudinal waves, the accumulation of tectonic strain and the temperature of ground water. They are interpreted as being caused by changes of effective stress due to fluctuations of internal pore fluid pressure and/or the ambient stress level.


Fault Zone Pore Pressure Pore Fluid Tectonic Stress Earth Tide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aggarval, Y. P., L. R. Sykes, Y. Armbruster, and M. L. Sbar. 1973. Premonitory changes in seismic velocities and prediction of earthquakes, Nature, 241: 101–104.Google Scholar
  2. Beaumont, C. 1978. Linear and nonlinear interactions between the earth tide and a tectonically stressed earth. 313–318. In: Applications of geodesy to geodynamics, I. Mueller, ed., Ohio State University Press.Google Scholar
  3. Beaumont, C. and J. Berger. 1974. Earthquake prediction: modification of the Earth tide tilts and strains, Geophys. J. R. Astron. Soc., 39: 111–121.Google Scholar
  4. Biot, M. A. 1941. General theory of three-dimensional consolidation, J. Applied Physics, 1: 155–164.Google Scholar
  5. Bonatz, M., C. Gerstenecker, C. Kistermann, and J. Zschau. 1983. Tilt measurements across a deep fault zone, Proc. Int. 9th Symp. Earth Tides, New York, 695–704.Google Scholar
  6. Brace, W. F., B. W. Paulding, and C. H. Scholz. 1966. Dilatancy in the fracture of crystalline rocks, J. Geophys. Res., 71: 3939–3953.Google Scholar
  7. Byerlee, J. 1993. Model for episodic flow of high-pressure water in fault zones before earthquakes, Geology, 21: 303–306.Google Scholar
  8. Eshelby, J. D. 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc., 241: 376–396Google Scholar
  9. Gerstenecker, C., J. Zschau, and M. Bonatz. 1985. Finite element modelling of the Hunsrück tilt anomalies — a model comparison, Proc. Int. Symp. Earth Tides, R. Vieira, ed., Madrid, 797–803.Google Scholar
  10. Harkrider, D. G. 1970. Surface waves in multilayered media, 2, Higher mode spectra and spectral ratios from point sources in plane layered earth models, Bull. Seism. Soc. Amer., 60: 1937.Google Scholar
  11. Harrison, J. C., 1976. Cavity and topographic effects in tilt and strain measurements, Jour. Geophys. Res., 81, 319–328.Google Scholar
  12. King, G. C. P., W. Zürn, R. Evans, and D. Emter. 1976. Site corrections for long period seismometers, tiltmeters and strainmeters, Geoph. J. Roy. Astr. Soc., 44: 405–411.Google Scholar
  13. Kirsch, R. and J. Zschau. 1986. The influence of a dilatant region in the Earth's crust on the Earth tide tilt and strain, J. Geophys., 59: 157–163.Google Scholar
  14. Kümpel, H. J. 1982. Neigungsmessungen zwischen Hydrologie und Ozeanographie, PhD thesis, University of Kiel.Google Scholar
  15. Kümpel, H. J. 1989. Verformungen in der Umgebung von Brunnen, Habil. thesis, University of Kiel.Google Scholar
  16. Latynina, L. A. and S. D. Rizaeva. 1976. On Tidal Strain Variations Before Earthquakes, Tectonophysics, 3: 121–127.Google Scholar
  17. Levine, J., C. Meertens, and R. Busby. 1989. Tilt observations using borehole tiltmeters — 1. Analysis of tidal and secular tilt, J. Geophys. Res., 94: 574–586.Google Scholar
  18. Lühr, B.-G., C. Milkereit, R. Meissner, and N. Büyükköse. 1991. Temporal variations of seismic signals within the active seismic experiment in the Mudurnu Valley, Turkey, Proceedings of the International Conference on Earthquake Prediction: State-of-the-Art, Strasbourg, 336–343.Google Scholar
  19. Mao, W. J., C. Ebblin, and M. Zadro. 1989. Evidence for variations of mechanical properties in the Friuli seismic area, Tectonophysics, 170: 231–242.Google Scholar
  20. Meertens, C. M. 1987. Tilt tides and tectonics at Yellowstone National Park, PhD thesis, University of Colorado.Google Scholar
  21. Meissner, R. 1986. The continental crust — a geophysical approach, International Geophysics Series, 34, Academic Press, London.Google Scholar
  22. Michel, G. W. 1994. ‘Neo'-Kinematics along the North-Anatolian Fault, PhD thesis, Tübinger Geowissenschaftliche Arbeiten (TGA), Reihe A, Band 16, University of Tübingen.Google Scholar
  23. Mikumo, T., M. Kato, H. Doi, J. Wada, T. Tanaka, R. Shichi, and A. Yamamoto. 1977. Possibility of temporal variations in Earth tidal strain amplitudes associated with major earthquakes. 123–136. In: Earthquake Precursors: Proceedings of the U.S.-Japan Seminar on Theoretical and Experimental Investigations of Earthquake Precursors, C. Kisslinger and Z. Shuki (eds.), Central Academic Publishers of Japan, Tokyo.Google Scholar
  24. Milkereit, C. 1988. Dilatanz und Anisotropie als spannungsabhängige Phänomene nichtlinearer Elastizität und ihr Einfluß auf seismische Messungen und Erdgezeitenregistrierungen, diploma thesis, University of Kiel.Google Scholar
  25. Mogi, K. 1985. Earthquake Prediction, Academic Press, Tokyo.Google Scholar
  26. Molodensky, S. M. 1983. Local anomalies in amplitude and phase of tidal tilts and deformations, Izvestiya, Earth Physics, 17: 501–505.Google Scholar
  27. Neresov, I. L., A. N. Semyenov, and J. G. Simbireva. 1971. Space-time distribution of the ratio of travel times of compressional and transverse waves in the Garm region. 334–348. In: Experimental Seismology, Sadovsky (ed.), Nauka, Moscow, (in Russian).Google Scholar
  28. Nishimura, E. 1950. On earth tides, Am. Geophys. Union Trans., 31: 357–376Google Scholar
  29. Nur, A. and J. D. Beyerlee. 1971. An exact effective stress law for elastic deformation of rock with fluids, J. Geophys. Res., 76: 6414–6419.Google Scholar
  30. Nur, A. 1972. Dilatancy, pore fluids, and premonitory variations of ts/tp traveltimes, Bull. Seism. Soc. Am., 62: 1217–1222.Google Scholar
  31. Peters, J. and C. Beaumont. 1985. Borehole tilt measurements from Charlevoix, Québec, J. Geophys. Res., 90: 12791–12806.Google Scholar
  32. Rice, J. R. 1983. Constitutive relations for fault slip and earthquake instabilities, Pure appl. Geophys., 121: 443–475.Google Scholar
  33. Scholz, C. H. 1990. The mechanics of earthquakes and faulting, Cambridge University Press.Google Scholar
  34. Scholz, C. H., L. R. Sykes, and Y. P. Aggarval. 1973. Earthquake prediction: a physical basis, Science, 181: 803–810.Google Scholar
  35. Schüller, K. 1977. Tidal analysis by the hybrid least squares frequency domain convolution method. 103–128. In: Proc. Int. 8th Symp. Earth Tides, M. Bonatz and P. Melchior (eds.), BonnGoogle Scholar
  36. Schüller, K. 1985. Computer program HYCON.Google Scholar
  37. Tse S. T. and J. R. Rice. 1986. Crustal earthquake instability in relation to frictional constitutive response, J. Geophys. Res., 91: 9452–9472.Google Scholar
  38. Tullis, T. E. 1988. Rock friction constitutive behavior from laboratory experiments and its implications for an earthquake prediction field monitoring program, Pure appl. Geophys., 126: 555–588.Google Scholar
  39. Westerhaus, M. 1996. Tilt and well level tides along an active fault, PhD-Thesis, Scientific-Technical Reports, 5/1996, GeoForschungsZentrum Potsdam.Google Scholar
  40. Westerhaus, M. and J. Zschau. 1989. Tidal tilt modification at the western end of the North-Anatolian Fault Zone: an indication for slow changes of crustal properties. 82–108. In: Turkish-German Earthquake Research Project, J. Zschau and O. Ergunay (eds.), KielGoogle Scholar
  41. Westerhaus, M., W. Welle, N. Büyükköse, and J. Zschau. 1991. Temporal variations of crustal properties in the Mudurnu Valley, Turkey: an indication for regional effects of local asperities?, Proceedings of the International Conference on Earthquake Prediction: State-of-the-Art, Strasbourg, 272–281.Google Scholar
  42. Wyss, M., M. Westerhaus, H. Berckhemer, and R. Ates. 1995. Precursory seismic quiescence in the Mudurnu Valley, North Anatolian Fault Zone, Turkey, Geophys. J. Int., 123: 117–124Google Scholar
  43. Zschau, J., M. Westerhaus, W. Welle, and N. Büyükköse, N. Büyükköse, 1991. Regional strain accumulation from local tidal tilt-and well level data: a new approach, Proceedings of the International Conference on Earthquake Prediction: State-of-the-Art, Strasbourg, 444–453.Google Scholar
  44. Zürn, W., H. Kiesel, H. Otto, and H. Mälzer. 1977. Phenomenological approach to straintilt coupling at Schiltach Observatory. 451–465. In: Proc. 8th Int. Symp. Earth Tides, M. Bonatz and P. Melchior (eds.), Bonn.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Malte Westerhaus
    • 1
  1. 1.GeoForschungsZentrum PotsdamPotsdam

Personalised recommendations