Skip to main content

Tidal tilt modification along an active fault

  • Tidally Induced Phenomena
  • Chapter
  • First Online:
Tidal Phenomena

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 66))

Abstract

Inhomogeneous deformation in the vicinity of a lateral contrast between different poroelastic structures in the crust causes local tidal tilt disturbances. A number of model approaches have been published since more than 20 years in order to give a quantitative estimation of this effect which is known as ‘geologic effect’. Most of them correctly predict the general behaviour of tidal tilt modification near an elastic contrast but underestimate the large disturbances that have been observed experimentally. In principle, the geologic effect can be used to infer changes in the state of deformation with increasing tectonic stress. Several experiments have been conducted in earthquake prone areas in order to detect temporal variations of tidal tilt parameters related to seismotectonic events; the results, however, so far are inconclusive.

Tidal tilt observations along a western strand of the North-Anatolian Fault Zone, integrated within an interdisciplinary earthquake research project, reveal considerable deviations of the tidal tilt parameters from the response of a laterally homogeneous Earth. The most prominent temporal phenomenon during the years 1988 to 1994 are seasonal variations of the order of 8% with respect to the tidal tilt residual amplitudes. They are superimposed on a secular drift of the order of 5%, which starts or intensifies in the beginning of 1991. Both classes of signals are correlated with similar changes in independent observables like microseismic activity, the traveltimes of longitudinal waves, the accumulation of tectonic strain and the temperature of ground water. They are interpreted as being caused by changes of effective stress due to fluctuations of internal pore fluid pressure and/or the ambient stress level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggarval, Y. P., L. R. Sykes, Y. Armbruster, and M. L. Sbar. 1973. Premonitory changes in seismic velocities and prediction of earthquakes, Nature, 241: 101–104.

    Google Scholar 

  • Beaumont, C. 1978. Linear and nonlinear interactions between the earth tide and a tectonically stressed earth. 313–318. In: Applications of geodesy to geodynamics, I. Mueller, ed., Ohio State University Press.

    Google Scholar 

  • Beaumont, C. and J. Berger. 1974. Earthquake prediction: modification of the Earth tide tilts and strains, Geophys. J. R. Astron. Soc., 39: 111–121.

    Google Scholar 

  • Biot, M. A. 1941. General theory of three-dimensional consolidation, J. Applied Physics, 1: 155–164.

    Google Scholar 

  • Bonatz, M., C. Gerstenecker, C. Kistermann, and J. Zschau. 1983. Tilt measurements across a deep fault zone, Proc. Int. 9th Symp. Earth Tides, New York, 695–704.

    Google Scholar 

  • Brace, W. F., B. W. Paulding, and C. H. Scholz. 1966. Dilatancy in the fracture of crystalline rocks, J. Geophys. Res., 71: 3939–3953.

    Google Scholar 

  • Byerlee, J. 1993. Model for episodic flow of high-pressure water in fault zones before earthquakes, Geology, 21: 303–306.

    Google Scholar 

  • Eshelby, J. D. 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc., 241: 376–396

    Google Scholar 

  • Gerstenecker, C., J. Zschau, and M. Bonatz. 1985. Finite element modelling of the Hunsrück tilt anomalies — a model comparison, Proc. Int. Symp. Earth Tides, R. Vieira, ed., Madrid, 797–803.

    Google Scholar 

  • Harkrider, D. G. 1970. Surface waves in multilayered media, 2, Higher mode spectra and spectral ratios from point sources in plane layered earth models, Bull. Seism. Soc. Amer., 60: 1937.

    Google Scholar 

  • Harrison, J. C., 1976. Cavity and topographic effects in tilt and strain measurements, Jour. Geophys. Res., 81, 319–328.

    Google Scholar 

  • King, G. C. P., W. Zürn, R. Evans, and D. Emter. 1976. Site corrections for long period seismometers, tiltmeters and strainmeters, Geoph. J. Roy. Astr. Soc., 44: 405–411.

    Google Scholar 

  • Kirsch, R. and J. Zschau. 1986. The influence of a dilatant region in the Earth's crust on the Earth tide tilt and strain, J. Geophys., 59: 157–163.

    Google Scholar 

  • Kümpel, H. J. 1982. Neigungsmessungen zwischen Hydrologie und Ozeanographie, PhD thesis, University of Kiel.

    Google Scholar 

  • Kümpel, H. J. 1989. Verformungen in der Umgebung von Brunnen, Habil. thesis, University of Kiel.

    Google Scholar 

  • Latynina, L. A. and S. D. Rizaeva. 1976. On Tidal Strain Variations Before Earthquakes, Tectonophysics, 3: 121–127.

    Google Scholar 

  • Levine, J., C. Meertens, and R. Busby. 1989. Tilt observations using borehole tiltmeters — 1. Analysis of tidal and secular tilt, J. Geophys. Res., 94: 574–586.

    Google Scholar 

  • Lühr, B.-G., C. Milkereit, R. Meissner, and N. Büyükköse. 1991. Temporal variations of seismic signals within the active seismic experiment in the Mudurnu Valley, Turkey, Proceedings of the International Conference on Earthquake Prediction: State-of-the-Art, Strasbourg, 336–343.

    Google Scholar 

  • Mao, W. J., C. Ebblin, and M. Zadro. 1989. Evidence for variations of mechanical properties in the Friuli seismic area, Tectonophysics, 170: 231–242.

    Google Scholar 

  • Meertens, C. M. 1987. Tilt tides and tectonics at Yellowstone National Park, PhD thesis, University of Colorado.

    Google Scholar 

  • Meissner, R. 1986. The continental crust — a geophysical approach, International Geophysics Series, 34, Academic Press, London.

    Google Scholar 

  • Michel, G. W. 1994. ‘Neo'-Kinematics along the North-Anatolian Fault, PhD thesis, Tübinger Geowissenschaftliche Arbeiten (TGA), Reihe A, Band 16, University of Tübingen.

    Google Scholar 

  • Mikumo, T., M. Kato, H. Doi, J. Wada, T. Tanaka, R. Shichi, and A. Yamamoto. 1977. Possibility of temporal variations in Earth tidal strain amplitudes associated with major earthquakes. 123–136. In: Earthquake Precursors: Proceedings of the U.S.-Japan Seminar on Theoretical and Experimental Investigations of Earthquake Precursors, C. Kisslinger and Z. Shuki (eds.), Central Academic Publishers of Japan, Tokyo.

    Google Scholar 

  • Milkereit, C. 1988. Dilatanz und Anisotropie als spannungsabhängige Phänomene nichtlinearer Elastizität und ihr Einfluß auf seismische Messungen und Erdgezeitenregistrierungen, diploma thesis, University of Kiel.

    Google Scholar 

  • Mogi, K. 1985. Earthquake Prediction, Academic Press, Tokyo.

    Google Scholar 

  • Molodensky, S. M. 1983. Local anomalies in amplitude and phase of tidal tilts and deformations, Izvestiya, Earth Physics, 17: 501–505.

    Google Scholar 

  • Neresov, I. L., A. N. Semyenov, and J. G. Simbireva. 1971. Space-time distribution of the ratio of travel times of compressional and transverse waves in the Garm region. 334–348. In: Experimental Seismology, Sadovsky (ed.), Nauka, Moscow, (in Russian).

    Google Scholar 

  • Nishimura, E. 1950. On earth tides, Am. Geophys. Union Trans., 31: 357–376

    Google Scholar 

  • Nur, A. and J. D. Beyerlee. 1971. An exact effective stress law for elastic deformation of rock with fluids, J. Geophys. Res., 76: 6414–6419.

    Google Scholar 

  • Nur, A. 1972. Dilatancy, pore fluids, and premonitory variations of ts/tp traveltimes, Bull. Seism. Soc. Am., 62: 1217–1222.

    Google Scholar 

  • Peters, J. and C. Beaumont. 1985. Borehole tilt measurements from Charlevoix, Québec, J. Geophys. Res., 90: 12791–12806.

    Google Scholar 

  • Rice, J. R. 1983. Constitutive relations for fault slip and earthquake instabilities, Pure appl. Geophys., 121: 443–475.

    Google Scholar 

  • Scholz, C. H. 1990. The mechanics of earthquakes and faulting, Cambridge University Press.

    Google Scholar 

  • Scholz, C. H., L. R. Sykes, and Y. P. Aggarval. 1973. Earthquake prediction: a physical basis, Science, 181: 803–810.

    Google Scholar 

  • Schüller, K. 1977. Tidal analysis by the hybrid least squares frequency domain convolution method. 103–128. In: Proc. Int. 8th Symp. Earth Tides, M. Bonatz and P. Melchior (eds.), Bonn

    Google Scholar 

  • Schüller, K. 1985. Computer program HYCON.

    Google Scholar 

  • Tse S. T. and J. R. Rice. 1986. Crustal earthquake instability in relation to frictional constitutive response, J. Geophys. Res., 91: 9452–9472.

    Google Scholar 

  • Tullis, T. E. 1988. Rock friction constitutive behavior from laboratory experiments and its implications for an earthquake prediction field monitoring program, Pure appl. Geophys., 126: 555–588.

    Google Scholar 

  • Westerhaus, M. 1996. Tilt and well level tides along an active fault, PhD-Thesis, Scientific-Technical Reports, 5/1996, GeoForschungsZentrum Potsdam.

    Google Scholar 

  • Westerhaus, M. and J. Zschau. 1989. Tidal tilt modification at the western end of the North-Anatolian Fault Zone: an indication for slow changes of crustal properties. 82–108. In: Turkish-German Earthquake Research Project, J. Zschau and O. Ergunay (eds.), Kiel

    Google Scholar 

  • Westerhaus, M., W. Welle, N. Büyükköse, and J. Zschau. 1991. Temporal variations of crustal properties in the Mudurnu Valley, Turkey: an indication for regional effects of local asperities?, Proceedings of the International Conference on Earthquake Prediction: State-of-the-Art, Strasbourg, 272–281.

    Google Scholar 

  • Wyss, M., M. Westerhaus, H. Berckhemer, and R. Ates. 1995. Precursory seismic quiescence in the Mudurnu Valley, North Anatolian Fault Zone, Turkey, Geophys. J. Int., 123: 117–124

    Google Scholar 

  • Zschau, J., M. Westerhaus, W. Welle, and N. Büyükköse, N. Büyükköse, 1991. Regional strain accumulation from local tidal tilt-and well level data: a new approach, Proceedings of the International Conference on Earthquake Prediction: State-of-the-Art, Strasbourg, 444–453.

    Google Scholar 

  • Zürn, W., H. Kiesel, H. Otto, and H. Mälzer. 1977. Phenomenological approach to straintilt coupling at Schiltach Observatory. 451–465. In: Proc. 8th Int. Symp. Earth Tides, M. Bonatz and P. Melchior (eds.), Bonn.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Helmut Wilhelm Walter Zürn Hans-Georg Wenzel

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this chapter

Cite this chapter

Westerhaus, M. (1997). Tidal tilt modification along an active fault. In: Wilhelm, H., Zürn, W., Wenzel, HG. (eds) Tidal Phenomena. Lecture Notes in Earth Sciences, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0011469

Download citation

  • DOI: https://doi.org/10.1007/BFb0011469

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62833-0

  • Online ISBN: 978-3-540-68700-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics