Tidal Phenomena pp 261-274 | Cite as
Geomagnetic tides and related phenomena
Atmospheric Tides And Related Phenomena
First Online:
- 7 Citations
- 931 Downloads
Abstract
Daily variations of the geomagnetic field with amplitudes of about 50 nT at middle latitudes have been known for almost three centuries. Electrical currents in the conducting upper atmosphere are responsible for their main part. They are caused by tidal winds, which are excited by solar heating of the atmosphere as well as by gravitational forces of the moon. In addition, smaller contributions to magnetic variations arise from electrical currents in the magnetosphere, and from tidal currents in the oceans.
Keywords
Solar Activity Interplanetary Magnetic Field Daily Variation Main Field International Reference Ionosphere
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Celsius, A. 1740. Bemerkungen über der Magnetnadel stündliche Veränderungen in ihrer Abweichung. Svenska Vet. Acad. Handl. 296–299.Google Scholar
- Chapman, S. and Bartels, J. 1940. Geomagnetism, vol. I+II. Clarendon Press, Oxford.Google Scholar
- Chapman, S. and Lindzen, R. S. 1970. Atmospheric tides, thermal and gravitational. Reidel Publ. Comp., Dordrecht.Google Scholar
- Gauß, C. F. 1838. Allgemeine Theorie des Erdmagnetismus, Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838. Göttingen & Leipzig.Google Scholar
- Graham, G. 1724. An Account of Observations Made of the Variation of the Horizontal Needle at London in the Latter Part of the Year 1722 and Beginning 1723. Phil. Trans. Roy. Soc. London. 383: 96–107.Google Scholar
- Junge, A. 1988. The telluric field in northern Germany induced by tidal motion in the North Sea. Geophys. J. 95: 523–533.Google Scholar
- Kelley, M. C. 1989. The Earth's Ionosphere. Plasma Physics and Electrodynamics. Int. Geophysical Series. 43. Academic Press.Google Scholar
- Kreil, K. 1839. Resultate dreijähriger magnetischer Beobachtungen zu Mailand und Einfluss des Mondes darauf. Ann. Physik. 46: 443.Google Scholar
- Malin, S. R. C. 1970. Separation of lunar daily variations into parts of ionospheric and oceanic origin. Geophys. J. R. astr. Soc.. 21: 447–455.Google Scholar
- Richmond, A. D. 1989. Modeling the Ionospheric Wind Dynamo: A Review. In: Quiet Daily Geomagnetic Fields. W. H. Campbell (ed.). Birkhäuser Verlag, Basel.Google Scholar
- Richmond, A. D. 1995. Ionospheric Electrodynamics. In: Handbook of Atmospheric Electrodynamics, Vol. 2. H. Volland (ed.). CRC Press, Boca Raton.Google Scholar
- Richmond, A. D. and Roble, R. G. 1987. Electrodynamic Effects of Thermospheric Winds from the NCAR Thermospheric General Circulation Model. J. geophys. Res.. 92: 12365–12376.Google Scholar
- Sabine, E. 1853. On the Influence of the Moon on the Magnetic Declination at Toronto, St. Helena and Hobarton. Phil. Trans. Roy. Soc. London. A143: 549–560.Google Scholar
- Schuster, A. 1889. The Diurnal Variation of Terrestrial Magnetism. Phil. Trans. Roy. Soc. London. A180: 467–518.Google Scholar
- Schuster, A. 1908. The Diurnal Variation of Terrestrial Magnetism. Phil. Trans. Roy. Soc. London. A208: 163–204.Google Scholar
- Stewart, B. 1883. Hypothetical Views Regarding the Connection between the State of the Sun and Terrestrial Magnetism. Encyclopedia Britannica. 16: 181–184.Google Scholar
- Svalgaard, L. 1973. Polar cap magnetic variations and their relationship with the interplanetary magnetic sector structure. J. geophys. Res. 78: 2064–2078.Google Scholar
- Takeda, M. and Maeda, H. 1980. Three-Dimensional Structure of Ionospheric Currents — 1. Currents Caused by Diurnal Tidal Winds. J. geophys. Res. 85: 6895–6899.Google Scholar
- Van Bemmelen, W. 1912. Die lunare Variation des Erdmagnetismus. Meteorol. Z. 29: 218–225.Google Scholar
Copyright information
© Springer-Verlag 1997