Tidal Phenomena pp 247-260 | Cite as
Long-period variations of solar irradiance
Atmospheric Tides And Related Phenomena
First Online:
- 905 Downloads
Abstract
Long-period variations of solar tides on earth and of solar irradiance received at the top of the atmosphere are produced by changes of the earth's orientation and its orbit in space, i. e. by the precession of the earth's axis of angular momentum and by variations of the obliquity and eccentricity of its orbit. The Milankovic-hypothesis states that ice ages and interglacials are caused by these long period changes of solar irradiance. Prominent climatic variations of much shorter period detected in Greenland ice-cores cast doubts on the validity of this hypothesis.
Keywords
Solar Irradiance Semimajor Axis Total Solar Irradiance Glacial Cycle Cosmic Dust
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Adrian, G. and F. Fielder. 1991. Simulations of instationary wind and temperature fields over complex terrain and comparison with observations. Contrib. Atmosph. Physics 64: 27–48.Google Scholar
- Bartels, J. 1958. Tidal forces. pp. 734–774. In: Encyclopedia of Physics, Vol. 48. Geophysics II, S. Flügge (ed.). Springer Verlag, Berlin, 1046 pp.Google Scholar
- Bassinot, F.C., L.D. Labeyrie, E. Vincent, X. Quidelleur, J.F. Shackleton, and Y. Lancelot. 1994. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet. Sci. Let. 126: 91–108.Google Scholar
- Berger, A.L. 1978: Long-term variations of daily insolation and quaternary climate changes. J. Atm. Sci. 35: 2362–2367.Google Scholar
- Berger, A., M.-F. Loutre and C. Tricot. 1993. Insolation and earth's orbital periods. J. Geophys. Res. 98: 10,341–10,362.Google Scholar
- Bond, G.C. and R. Lotti. 1995. Iceberg discharges into the North Atlantic on millennial time scale during the last glaciation. Science 267: 1005–1010.Google Scholar
- Broecker, W.S. 1995. Massive iceberg discharges as triggers for global climate change. Nature 372: 421–424.Google Scholar
- Broecker, W.S. and G.H. Denton. 1989. The role of ocean-atmosphere reorganizations in glacial cycles. Geochimica et Cosmochimica Acta 53: 2465–2501.Google Scholar
- Broecker, W.S. and J. van Donk. 1970. Insolation changes, ice volumes, and the 18O record in deep-sea cores. Rev. Geophys. Space Phys. 8: 169–198Google Scholar
- Chao, B.F. 1996. “Concrete” testimony of Milankovitch cycle in earth's changing obliquity. EOS Transactions. Am. Geophys. Union 44: 434.Google Scholar
- Clemens, S.C. and R. Tiedemann. 1997. Eccentricity forcing of Pliocene-Early Pleistocene climate revealed in a marine oxygen-isotope record. Nature 385: 801–804.Google Scholar
- Croll, J. 1864. On the eccentricity of the earth's orbit and its physical relations to the glacial epoch. Phil. Mag. 33: 119–131.Google Scholar
- Crowley, T.J. and G.R. North. 1991. Paleoclimatology. Oxford University Press, Oxford, 339 pp.Google Scholar
- Foukal., P. 1987. Physical interpretation of variations in total solar irradiance. J. Geophys. Res. 92: 801–807.Google Scholar
- Foukal, P. 1994: Study of solar irradiance variations holds key to climate questions. EOS Transactions Am. Geophys. Union 75: 377–382.Google Scholar
- Friederich, W. 1984. Strahlungseffekte bei Gezeitenmessungen. Diploma Thesis, Karlsruhe University, Germany.Google Scholar
- Friederich, W. and H. Wilhelm. 1986. Solar radiational effects on earth tide measurements. pp. 865–879. In: Proc. 10th Int. Symp. Earth Tides. R. Vieira (ed.). Consejo Superior de Investigaciones Cientificas, Madrid.Google Scholar
- Hays, J.D., J. Imbrie and N.J. Shackleton. 1976. Variations in the earth's orbit: Pacemaker of the ice ages. Science 194: 1121–1132.Google Scholar
- Imbrie, J. and J.Z. Imbrie. 1980. Modeling the climatic response of orbital variations. Science 207: 943–953.Google Scholar
- Imbrie, J., J.D. Hays, D.G. Martinson, A. McIntyre, A.C. Mix, J.J. Morley, N.-G. Pirias, W.L. Prell, and N.J. Shackleton. 1984. The orbital theory of Pleistocene climate: support from a revised chronology of a marine δ180 record. pp. 269–305 In: Milankovitch and Climate, part I. A. Berger, J. Imbrie, J. Hays, G. Kula and B. Saltzman (eds.), Reidel Publ. Comp., Dordrecht, 895 pp.Google Scholar
- Johnsen, S.J., H.B. Clausen, W. Dansgaard, K. Fuhrer, N. Gundestrup, C.U. Hammer, P. Iversen, J. Jouzel, B. Stauffer, and J.P. Steffensen. 1992. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359: 311–313.Google Scholar
- Lean, J. 1991. Variations in the sun's radiative output. Rev. Geophysics 29: 501–535.Google Scholar
- Liu, H.-S. 1992. Frequency variation of the earth's obliquity and the 100-kyr cycles. Nature 358: 397–399Google Scholar
- Liu, H.-S. 1995. A new view on the driving mechanism of Milankovitch glaciation cycles. Earth Planet. Sci. Let. 131: 17–26Google Scholar
- Milankovic, M. 1930. Mathematische Klimalehre und Astronomische Theorie der Klimaschwankungen. Bornträger, Berlin. 176 pp.Google Scholar
- Milankovic, M. 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitproblem. Königl. Serb. Akad. Beograd, Spec. Publ. 132. 633 pp.Google Scholar
- Muller, R.A. and G.J. MacDonald. 1995. Glacial cycles and orbital inclination. Nature 377: 107–108Google Scholar
- Neeman, B.U., G. Ohring, and J.H. Joseph. 1988a. The Milankovitch theory and climate sensitivity. 1. Equilibrium climate model solutions for the present surface conditions. J. Geophys. Res. 93: 11,153–11,174.Google Scholar
- Neeman, B.U., G. Ohring, and J.H. Joseph. 1988b. The Milankovitch theory and climate sensitivity. 2. Interaction between the northern hemisphere ice sheets and the climate system. J. Geophys. Res. 93: 11,175–11,191.Google Scholar
- Newman, A. 1995. New mechanism proposed for glacial cycles. EOS Transactions Am. Geophys. Union 76: 489–490.Google Scholar
- Otto-Bliesner, B.L. 1996. Initiation of a continental ice sheet in a global climate model (GENESIS). J. Geophys. Res. 101: 16,909–16,920.Google Scholar
- Overpeck, J., D. Rind, A. Lacis, and R. Healy. 1996. Possible role of dust-induced regional warming in abrupt climate change during the last glacial period. Nature 384: 447–449.Google Scholar
- Rahmstorf, S., J. Marotzke, and J. Willebrand. 1996. Stability of the thermohaline circulation. pp. 129–158. In: The Warmwatersphere of the North Atlantic Ocean. W. Krauß (ed.). Gebrüder Bornträger, Berlin, 446 pp.Google Scholar
- Rind, D., D. Peteet and G. Kukla. 1989. Can Milankovitch orbital variations initiate the growth of ice sheets in a general circulation model? J. Geophys. Res. 94: 12,851–12,871.Google Scholar
- Roy, A.E. 1988. Orbital Motion. 3rd edition. Adam Hilger, Bristol, 532 pp.Google Scholar
- Schüller, K. 1976. Ein Beitrag zur Auswertung von Erdgezeitenregistrierungen. Deutsche Geodätische Kommission Reihe C., No. 227, München.Google Scholar
- Suarez, M.J. and I.M. Held. 1976. Modelling climatic response to orbital parameter variations. Nature 263: 46–47.Google Scholar
- Thomson, D.J. 1995. The seasons, global temperature, and precession. Science 268: 59–68.Google Scholar
- Weertman, J. 1976. Milankovitch solar radiation variations and ice age ice sheet sizes. Nature 261: 17–20.Google Scholar
- Wigley, T.M.L. 1976. Spectral analysis and the astronomical theory of climatic change. Nature 264: 629–631.Google Scholar
Copyright information
© Springer-Verlag 1997