Skip to main content

Atmospheric tides

  • Atmospheric Tides And Related Phenomena
  • Chapter
  • First Online:
Tidal Phenomena

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 66))

Abstract

Atmospheric tides are diurnal and annual variations as well as higher harmonics of atmospheric parameters like pressure, temperature, or winds. They are generated mainly thermally by the regular solar heat input into the system atmosphere-earth's surface (solar tides). The daily variations of the solar tides have a basic period of one solar day. The semidiurnal component reaches maximum amplitudes of its ground pressure of the order of about 1 hPa, a value just above the meteorological noise. The pressure amplitudes of the zonally averaged seasonal waves with the basic period of one tropical year, however, have amplitudes of the order of 20 hPa and are therefore prominent global-scale atmospheric wave structures. The gravitationally generated lunar semidiurnal atmospheric tides have maximum pressure amplitudes on the ground that are about a factor 20 smaller than those of the solar tides. In order to detect such small a signal, it must be filtered out of the meteorological noise by a statistical analysis spanning several decades. Observations, excitation mechanisms, and the theory of atmospheric tides are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes, R.T.H., R. Hide, A.A. White, and C.A. Wilson. 1983. Atmospheric angular momentum fluctuations, Length-of-Day changes and polar motion. Proc. R. Soy. London Ser. A 387: 31.

    Google Scholar 

  • Bartels, J. und W. Kertz. 1952. Gezeitenartige Schwingungen der Atmosphäre. In: Landoldt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik 3: 674.

    Google Scholar 

  • Chapman, S., and R.S. Lindzen. 1970. Atmospheric Tides. Reidel, Dordrecht.

    Google Scholar 

  • Charney, J.G., and P.G. Drazin. 1961. Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. geophys. Res.. 66: 83.

    Google Scholar 

  • Eubanks, T.M. 1993. Variations in the orientation of the Earth. In: Contributions of Space Geodynamics: Earth Dynamics. Geodynamics Series. 24: 1. Smith, D.E., and D.L. Turcotte (eds.). American Geophysical Union, Washington, D.C..

    Google Scholar 

  • Forbes, J.M. 1982. Atmospheric tides— I and II. J. geophys. Res.. 87: 5222–5241.

    Google Scholar 

  • Forbes, J.M. 1984. Middle atmospheric tides. J. Atm. Terr. Phys.. 46: 1049.

    Google Scholar 

  • Fröhlich, C. 1994. Irradiance observations of the Sun. In: The Sun as a Variable Star. Proc. IAU Symposium. 143: 28. J.M. Pap, C. Fröhlich, H.S. Hudson, and S.K. Solanki (eds.). Cambridge University Press, Cambridge.

    Google Scholar 

  • Haurwitz, B. 1956. The geographic distribution of the solar semidiurnal pressure oscillation. Meteorol. Papers. 2. New York University.

    Google Scholar 

  • Hines, C.O. 1960. Internal gravity waves at ionospheric heights. Can. J. Phys.. 38: 1441.

    Google Scholar 

  • Hollingworth, A. 1971. The effect of ocean and earth tides on the semidiurnal lunar air tide. J. Atm. Terr. Phys.. 28: 1021.

    Google Scholar 

  • Holton, J.R. 1983. An Introduction to Dynamic Meteorology. Academic Press, New York.

    Google Scholar 

  • Kiehl, J.T. 1994. Clouds and their effects on the climatic system. Physics Today. 11: 36.

    Google Scholar 

  • Labitzke, K. 1981. Stratospheric-mesospheric midwinter disturbances: a summary of observed characteristics. J. geophys. Res.. 86: 9665.

    Google Scholar 

  • McAvaney, B.J., W. Bourke, and K. Puiri. 1978. A global spectral model for simulation of the general circulation. J. Atm. Sci.. 35: 1557.

    Google Scholar 

  • Möller, F. 1973. Einführung in die Meteorologie. Bibliographisches Institut, Mannheim.

    Google Scholar 

  • Murgatroyd, R.J. 1969. The structure and dynamics of the stratosphere. In: The Global Circulation of the Atmosphere. p. 159. G. A. Corby (ed.). Roy. Met. Soc., London.

    Google Scholar 

  • Reed, R.J. 1972. Further analysis of semidiurnal tidal motions between 30 and 60 km. Mon. Wea. Rev.. 100: 579.

    Google Scholar 

  • Siebert, M. 1961. Atmospheric tides. Adv. Geophysics. 7: 105.

    Google Scholar 

  • Volland, H. 1988. Atmospheric Tidal and Planetary Waves. Kluwer, Dordrecht.

    Google Scholar 

  • Volland, H. 1996. Atmosphere and Earth's rotation. Surveys Geophys.. 17: 101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Helmut Wilhelm Walter Zürn Hans-Georg Wenzel

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this chapter

Cite this chapter

Volland, H. (1997). Atmospheric tides. In: Wilhelm, H., Zürn, W., Wenzel, HG. (eds) Tidal Phenomena. Lecture Notes in Earth Sciences, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0011464

Download citation

  • DOI: https://doi.org/10.1007/BFb0011464

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62833-0

  • Online ISBN: 978-3-540-68700-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics