Atmospheric tides

  • Hans Volland
Atmospheric Tides And Related Phenomena
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 66)


Atmospheric tides are diurnal and annual variations as well as higher harmonics of atmospheric parameters like pressure, temperature, or winds. They are generated mainly thermally by the regular solar heat input into the system atmosphere-earth's surface (solar tides). The daily variations of the solar tides have a basic period of one solar day. The semidiurnal component reaches maximum amplitudes of its ground pressure of the order of about 1 hPa, a value just above the meteorological noise. The pressure amplitudes of the zonally averaged seasonal waves with the basic period of one tropical year, however, have amplitudes of the order of 20 hPa and are therefore prominent global-scale atmospheric wave structures. The gravitationally generated lunar semidiurnal atmospheric tides have maximum pressure amplitudes on the ground that are about a factor 20 smaller than those of the solar tides. In order to detect such small a signal, it must be filtered out of the meteorological noise by a statistical analysis spanning several decades. Observations, excitation mechanisms, and the theory of atmospheric tides are reviewed in this chapter.


Zonal Wind Solid Earth Planetary Wave Tidal Wave Pressure Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, R.T.H., R. Hide, A.A. White, and C.A. Wilson. 1983. Atmospheric angular momentum fluctuations, Length-of-Day changes and polar motion. Proc. R. Soy. London Ser. A 387: 31.Google Scholar
  2. Bartels, J. und W. Kertz. 1952. Gezeitenartige Schwingungen der Atmosphäre. In: Landoldt-Börnstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik 3: 674.Google Scholar
  3. Chapman, S., and R.S. Lindzen. 1970. Atmospheric Tides. Reidel, Dordrecht.Google Scholar
  4. Charney, J.G., and P.G. Drazin. 1961. Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. geophys. Res.. 66: 83.Google Scholar
  5. Eubanks, T.M. 1993. Variations in the orientation of the Earth. In: Contributions of Space Geodynamics: Earth Dynamics. Geodynamics Series. 24: 1. Smith, D.E., and D.L. Turcotte (eds.). American Geophysical Union, Washington, D.C..Google Scholar
  6. Forbes, J.M. 1982. Atmospheric tides— I and II. J. geophys. Res.. 87: 5222–5241.Google Scholar
  7. Forbes, J.M. 1984. Middle atmospheric tides. J. Atm. Terr. Phys.. 46: 1049.Google Scholar
  8. Fröhlich, C. 1994. Irradiance observations of the Sun. In: The Sun as a Variable Star. Proc. IAU Symposium. 143: 28. J.M. Pap, C. Fröhlich, H.S. Hudson, and S.K. Solanki (eds.). Cambridge University Press, Cambridge.Google Scholar
  9. Haurwitz, B. 1956. The geographic distribution of the solar semidiurnal pressure oscillation. Meteorol. Papers. 2. New York University.Google Scholar
  10. Hines, C.O. 1960. Internal gravity waves at ionospheric heights. Can. J. Phys.. 38: 1441.Google Scholar
  11. Hollingworth, A. 1971. The effect of ocean and earth tides on the semidiurnal lunar air tide. J. Atm. Terr. Phys.. 28: 1021.Google Scholar
  12. Holton, J.R. 1983. An Introduction to Dynamic Meteorology. Academic Press, New York.Google Scholar
  13. Kiehl, J.T. 1994. Clouds and their effects on the climatic system. Physics Today. 11: 36.Google Scholar
  14. Labitzke, K. 1981. Stratospheric-mesospheric midwinter disturbances: a summary of observed characteristics. J. geophys. Res.. 86: 9665.Google Scholar
  15. McAvaney, B.J., W. Bourke, and K. Puiri. 1978. A global spectral model for simulation of the general circulation. J. Atm. Sci.. 35: 1557.Google Scholar
  16. Möller, F. 1973. Einführung in die Meteorologie. Bibliographisches Institut, Mannheim.Google Scholar
  17. Murgatroyd, R.J. 1969. The structure and dynamics of the stratosphere. In: The Global Circulation of the Atmosphere. p. 159. G. A. Corby (ed.). Roy. Met. Soc., London.Google Scholar
  18. Reed, R.J. 1972. Further analysis of semidiurnal tidal motions between 30 and 60 km. Mon. Wea. Rev.. 100: 579.Google Scholar
  19. Siebert, M. 1961. Atmospheric tides. Adv. Geophysics. 7: 105.Google Scholar
  20. Volland, H. 1988. Atmospheric Tidal and Planetary Waves. Kluwer, Dordrecht.Google Scholar
  21. Volland, H. 1996. Atmosphere and Earth's rotation. Surveys Geophys.. 17: 101.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Hans Volland
    • 1
  1. 1.Radioastronomical InstituteUniversity of BonnBonnGermany

Personalised recommendations