Skip to main content

Chandler wobble and pole tide in relation to interannual atmosphere-ocean dynamics

  • Ocean Tides And Related Phenomena
  • Chapter
  • First Online:
Tidal Phenomena

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 66))

Abstract

Since the discovery of the Chandler wobble in polar motion more than a century ago, the cause of the wobble remained obscure. As long as one assumes the observed wobble to be a free damped mode of the rotating Earth, a reoccurring excitation of the wobble has to be assumed likewise. Neither the cause and mechanism of this excitation nor the damping of the wobble have satisfactorily been explained. Furthermore, the analyses of polar motion data under the above assumption lead to contradictory results, namely (1) a multi-frequency or a single frequency wobble, (2) an amplitude-dependent frequency, (3) a large diversity of Q-values.

A detailed study of polar motion, oceanographic, and meteorological data gave rise to the hypothesis that the observed wobble in fact is a forced oscillation, with a slightly variable forcing frequency. The consequences of this hypothesis are discussed. A possible forcing mechanism is found in a large-scale, quasi-periodic variation in air pressure within the Chandler band. This fourteen-to-sixteen months atmospheric fluctuation is responsible for most of the oceanic pole tide hitherto attributed to the Chandler wobble, and it is the most prominent candidate for forcing the observed wobble.

Regarding the observed Chandler wobble as a forced resonant phenomenon and not as a purely free wobble raises the question of the true Chandler period and the wobble Q. However, the determination of both, period and Q, is strongly limited by the amount of available data and the still unknown amplitude of the forcing function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes, R. T. H., Hide, R., White, A. A., and Wilson, C. A. 1983. Atmospheric angular momentum fluctuation, length-of-day changes and polar motion. Proc. Royal Soc.. A 387: 31–73.

    Google Scholar 

  • Bryson, R. A. and Starr, T. B. 1977. Chandler tides in the atmosphere. J. Atmos. Sci.. 34: 1975–1986.

    Google Scholar 

  • Carter, W. E. 1981. Frequency modulation of the Chandlerian component of polar motion. J. geophys. Res.. 86: 1653–1658.

    Google Scholar 

  • Chandler, S. C. 1891. On the variation of latitude, II. Astron. J.. XI: 65–70.

    Google Scholar 

  • Chandler, S. C. 1892. On the variation of latitude, VII. Astron. J.. XII: 97–101.

    Google Scholar 

  • Chandler, S. C. 1893. On the variation of latitude, VIII. Astron. J.. XIII: 159–162.

    Google Scholar 

  • Chandler, S. C. 1902. Astron. J.. 22: 154.

    Google Scholar 

  • Chao, B. F. 1983. Autoregressive harmonic analysis of the Earth's polar motion using homogeneous International Latitude Service data. J. geophys. Res.. 88: 10299–10307.

    Google Scholar 

  • Chao, B. F. and Au, A. Y. 1991. Atmospheric excitation of the earth's annual wobble: 1980–1988. J. geophys. Res.. 96: 6577–6582.

    Google Scholar 

  • Christie, A. S. 1900. The latitude variation tide. Bull. Phil. Soc. Washington. 13: 103–122.

    Google Scholar 

  • Colombo, G. and Shapiro, I. I. 1968. Theoretical model for the Chandler wobble. Nature. 217: 156–157.

    Google Scholar 

  • Currie, R. G. 1974. Period and Q w of the Chandler Wobble. Geophys. J. R. astr. Soc.. 38: 179–185.

    Google Scholar 

  • Currie, R. G. and Hameed, S. 1990. Atmospheric signals at high latitudes in a coupled ocean-atmosphere general circulation model. Geophys. Res. Lett.. 17: 945–948.

    Google Scholar 

  • Dahlen, F. A. 1971. The excitation of the Chandler wobble by earthquakes. Geophys. J. R. astr. Soc.. 25: 157–206.

    Google Scholar 

  • Dahlen, F. A. 1973. A correction to the excitation of the Chandler wobble by earthquakes. Geophys. J. R. astr. Soc.. 32: 203–217.

    Google Scholar 

  • Daillet, S. 1981. Secular variation of the pole tide: correlation with Chandler Wobble ellipticity. Geophys. J. R. astr. Soc.. 65: 407–421.

    Google Scholar 

  • Demaree, G. R. and Nicolis, C. 1990. Onset of Sahelian drought viewed as a fluctuation-induced transition. Q. J. R. Meteorol. Soc.. 116: 221–238.

    Google Scholar 

  • Dickman, S. R. 1979. Continental drift and true polar wandering. Geophys. J. R. astr. Soc.. 57: 41–50.

    Google Scholar 

  • Dickman, S. R. 1981. Investigation of Controversial Polar Motion Features Using Homogeneous International Latitude Service Data. J. geophys. Res.. 86: 4904–4912.

    Google Scholar 

  • Dickman, S. R. 1988. The self-consistent dynamic pole tide in non-global oceans. Geophys. J. Int.. 94: 519–543.

    Google Scholar 

  • Dickman, S. R. and Steinberg, J. R. 1986. New aspects of the equilibrium pole tide. Geophys. J. R. astr. Soc.. 86: 515–529.

    Google Scholar 

  • Ellsaesser, H. W., MacCracken, M. C., Walton, J. J., and Grotch, S. L. 1986. Global climatic trends as revealed by the recorded data. Rev. Geophys.. 24: 745–792.

    Google Scholar 

  • Furuya, M. and Chao, B. F. 1996. Estimation of period and q of the Chandler wobble. Geophys. J. Int.. 127: 693–702.

    Google Scholar 

  • Furuya, M., Hamano, Y., and Naito, I. 1996. Quasi-periodic wind signal as possible excitation of Chandler wobble. J. geophys. Res.. 101: 25537–25546.

    Google Scholar 

  • Gaposchkin, E. M. 1972. Analysis of pole positions from 1846–1970. In: Rotation of the Earth, pp. 19–32. P. Melchior, S. Yumi (eds). Reidel, Dordrecht.

    Google Scholar 

  • Goossens, C. and Berger, A. 1986. Annual and seasonal climatic variations over the northern hemisphere and Europe during the last century. Ann. Geophys.. 4: 385–400.

    Google Scholar 

  • Goossens, C. and Berger, A. 1987. How to recognize an abrupt climatic change? In: Abrupt Climatic Change, Evidence and Implications. pp. 31–47. W. H. Berger and L. Labeyrie (eds.). Reidel, Dordrecht.

    Google Scholar 

  • Graber, M. A. 1976. Polar motion spectra based upon Doppler, IPMS and BIH data. Geophys. J. R. astr. Soc.. 46: 75–85.

    Google Scholar 

  • Gross, R. S. 1985. Signal detection techniques applied to the Chandler Wobble. J. geophys. Res.. 90: 10281–10290.

    Google Scholar 

  • Gross, R. S. 1986. The influence of earthquakes on the Chandler wobble during 1977–1983. Geophys. J. R. astr. Soc.. 85: 161–177.

    Google Scholar 

  • Gross, R. S. 1990. The secular drift of the rotation pole. In: Earth Rotation and Coordinate Reference Frames. pp. 146–153. Boucher, C., Wilkins, C.A. (eds.). Springer, New York.

    Google Scholar 

  • Guinot, B. 1972. The Chandlerian nutation from 1900 to 1970. Astron. Astrophys.. 19: 207–214.

    Google Scholar 

  • Guinot, B. 1978. Rotation of the earth and polar motion services. In: Proc. of the 9th GEOP Conference.

    Google Scholar 

  • Guinot, B. 1982. The Chandlerian Nutation from 1900 to 1980. Geophys. J. R. astr. Soc.. 71: 295–301.

    Google Scholar 

  • Hameed, S. and Currie, R. G. 1989. Simulation of the 14-Month Chandler Wobble in a Global Climate Model. Geophys. Res. Lett.. 16: 247–250.

    Google Scholar 

  • Haubrich, R. A. and Munk, W. 1959. The pole tide. J. geophys. Res.. 64: 2373.

    Google Scholar 

  • Haubrich, R. A. 1970. An examination of the data relating pole motion to earthquakes. In: Earthquake Displacement Fields and the Rotation of the Earth. Mansinha, L., Smylie, D.E., Beck, A.E. (eds.). Reidel, Dordrecht.

    Google Scholar 

  • Hide, R. 1984. Rotation of the atmospheres of the Earth and planets. Phil. Trans. R. Soc. London A. 313: 107–121.

    Google Scholar 

  • Jones, P. D., Raper, S. C. B., Bradley, R. S., Diaz, H. F., Kelly, P. M., and Wigley, T. M. L. 1986. Northern hemispheric surface air temperature variations: 1851–1984. J. Clim. and App. Met.. 25: 161–179.

    Google Scholar 

  • Kanamori, H. 1976. Are earthquakes a major cause of the Chandler wobble? Nature. 262: 254–255.

    Google Scholar 

  • Kendall, M. and Stuard, A. 1979. The advanced theory of statistics. Vol. 2 Inference and relationship. Griffin and Co..

    Google Scholar 

  • Kikuchi, I. and Naito, I. 1982. Sea surface temperature (SST) analyses near the Chandler period. In: Proc. Int. Latitude Observ. Mizusawa. 21: 64–70.

    Google Scholar 

  • Kolaczek, B. 1989. Observational determination of the Earth's rotation. In: Gravity and Low Frequency Geodynamics. pp. 295–361. R. Teisseyre (ed.). Elsevier Warszawa.

    Google Scholar 

  • Kolaczek, B. and Hua, Y. S. 1991. Astronomical Series of Earth rotation parameters. 177: 121–138.

    Google Scholar 

  • Kuehne, J., Wilson, C. R., and Johnson, S. 1996. Estimates of the Chandler wobble frequency and Q. J. geophys. Res., 101: 13573–13579.

    Google Scholar 

  • Lambeck, K. 1980. The Earth's Variable Rotation: Geophysical Causes and Consequences. Cambridge University Press.

    Google Scholar 

  • Lambeck, K. 1988. Geophysical Geodesy — The Slow Deformations of the Earth. Oxford Science Publications.

    Google Scholar 

  • Lenhardt, H. and Groten, E. 1985. Chandler wobble parameters from BIH and ILS data. Manuscripta Geodaetica. 10: 296–305.

    Google Scholar 

  • Maddox, J. 1988. Earthquakes and the Earth's rotation. Nature. 332: 11.

    Google Scholar 

  • Maksimov, I. V. 1954. On long period tidal phenomena in the sea and in the atmosphere of the earth (in Russian). Trans. Inst. Okeanol.. 8: 18–40.

    Google Scholar 

  • Maksimov, I. V., Kraklin, V. P., Sarukhanyan, E. I., and Smirnov, N. P. 1967. Nutational migration of the Iceland Low. Dokl. Akad. Nauk SSSR. 177: 3–6.

    Google Scholar 

  • Mansinha, L. and Smylie, D. E. 1970. Seismic excitation of the Chandler wobble. In: Earthquake Displacement Fields and the Rotation of the Earth. Mansinha, L., Smylie, D.E., Beck, A.E. (eds.). Reidel, Dordrecht.

    Google Scholar 

  • Mansinha, L., Smylie, D. E., and Chapman, C. H. 1979. Seismic excitation of the Chandler wobble revisited. Geophys. J. R. astr. Soc.. 59: 1–17.

    Google Scholar 

  • Merriam, J. B. 1982. Meteorological excitation of the annual polar motion. Geophys. J. R. astr. Soc.. 70: 41–56.

    Google Scholar 

  • Mulholland, J. R. and Carter, W. E. 1982. Seth Carlo Chandler and the observational origins of geodynamics. In: High-precision Earth rotation and Earth-Moon dynamics. Proc. 63rd Colloq. Int. Astr. Union, Grasse, France. pp. XV–XIX. O. Calame (ed.). Reidel, Dordrecht.

    Google Scholar 

  • Munk, W. H. and MacDonald, G. J. F. 1960. The Rotation of the Earth. Cambridge University Press, Cambridge.

    Google Scholar 

  • Naito, I. 1977. Secular variation of the pole tide. J. Phys. Earth. 125: 221–231.

    Google Scholar 

  • Newcomb, S. 1891. Astron. J.. 11: 81–83.

    Google Scholar 

  • Okubo, S. 1982. Is the Chandler period variable? Geophys. J. R. astr. Soc.. 71: 629–646.

    Google Scholar 

  • Ooe, M. 1978. An optimal complex ARMA model of the Chandler wobble. Geophys. J. R. Astr. Soc.. 53: 445–457.

    Google Scholar 

  • Pejovič, N. and Vondràk, J. 1991. Polar motion: Observations and atmospheric excitation. Techn. Rep. IUGG Special Study Group 5–98, Bull. 5.

    Google Scholar 

  • Plag, H.-P. 1988. A regional study of Norwegian coastal long-period sea-level variations and their causes with special emphasis on the Pole Tide. Berl. Geowiss. Abhandl. Reihe A. 14: 1–175.

    Google Scholar 

  • Plag, H.-P. 1993. The “sea level rise” problem: An assessment of methods and data. In: Proc. Int. Coastal Congr., Kiel 1992. pp. 714–732. P. Lang Verlag, Frankfurt.

    Google Scholar 

  • Plag, H.-P. 1995. Coastal relative sea level: A valuable indicator of climate variability? In: Abstr., XXI Gen. Assembly Int. Union. Geodesy Geophys.: B 317.

    Google Scholar 

  • Preisig, J. R. 1992. Polar motion, atmospheric angular momentum excitation and earthquakes — correlations and significance. Geophys. J. Int.. 108: 161–178.

    Google Scholar 

  • Runcorn, S. K., Wilkins, G. A., Groten, E., Lenhardt, H., Campbell, J., Hide, R., Chao, B. F., Souriau, A., Hinderer, J., Legros, H., LeMouel, J.-L., and Feissel, M. 1988. The excitation of the Chandler Wobble. Surveys Geophys.. 9: 419–449.

    Google Scholar 

  • Schlesinger, M. E. and Ramankutty, N. 1994. An oscillation in the global climate system of 65–70 years. Nature. 367: 723–726.

    Google Scholar 

  • Schweydar, W. V. 1916. Die Bewegung der Drehachse der elastischen Erde im Erdkörper und im Raum. Astron. Nachr.. 203: 103–114.

    Google Scholar 

  • Smith, M. L. 1977. Wobble and nutation of the earth. Geophys. J. R. astr. Soc.. 50: 103–140.

    Google Scholar 

  • Smylie, D. E. and Mansinha, L. 1971. The elasticity theory of dislocations in real earth models and changes in the rotation of the Earth. Geophys. J. R. astr. Soc.. 23:, 329–354.

    Google Scholar 

  • Sneyers, R. 1975. Sur l'analyse statistique des séries d'observations. Note Techn. 143, OMM-No. 415, Geneva.

    Google Scholar 

  • Souriau, A. 1986. Random walk of the Earth's pole related to the Chandler wobble excitation. Geophys. J. R. astr. Soc.. 86: 455–465.

    Google Scholar 

  • Starr, T. 1983. On the dynamic atmospheric response to the Chandler wobble forcing. J. Atmos. Sci.. 40: 929–940.

    Google Scholar 

  • Tsimplis, M. N., Flather, R. A., and Vassie, J. M. 1994. The North Sea Pole Tide described through a tide-surge numerical model. Geophys. Res. Lett.. 21: 449–452.

    Google Scholar 

  • vanDam, T. M., Blewitt, G., and Heflin, M. B. 1994. Atmospheric pressure loading effects on Global Positioning System coordinate determinations. J. geophys. Res.. 99: 23939–23950.

    Google Scholar 

  • Vanicek, P. 1970. An analytical technique to minimize noise in a search for lines in the low frequency spectrum. Observ. Royal Belg., Comm. A. 96: 170–173.

    Google Scholar 

  • Volland, H. 1996. Atmosphere and Earth's rotation. Surveys Geophys.. 17: 101–144.

    Google Scholar 

  • Vondràk, J. 1985. Long-period behaviour of polar motion between 1900.0 and 1984.0. Ann. Geophys.. 3: 351–356.

    Google Scholar 

  • Wilson, C. R. and Haubrich, R. A. 1976a. Atmospheric contribution to the excitation of the Earth's wobble 1901–1970. Geophys. J. R. astr. Soc.. 46: 745–760.

    Google Scholar 

  • Wilson, C. R. and Haubrich, R. A. 1976b. Meteorological excitation of the Earth's wobble. Geophys. J. R. astr. Soc.. 46: 707–743.

    Google Scholar 

  • Wilson, C. R. and Vicente, R. O. 1980. An analysis of the homogeneous ILS polar motion series. Geophys. J. R. astr. Soc.. 62: 605–616.

    Google Scholar 

  • Wilson, C. R. and Vicente, R. O. 1990. Maximum likelihood estimates of polar motion parameters. In: Variations in Earth Rotation. Geophys. Monographs. 59: 151–155. D. D. McCarthy and W. E. Carter (eds.). Am. geophys. Union, Washington D. C.

    Google Scholar 

  • Xie, L. and Dickman, S. R. 1996. Tide gauge analysis of the pole tide in the North Sea. Geophys. J. Int.. 126: 863–870.

    Google Scholar 

  • Yumi, S. and Yokoyama, K. 1980. Results of the International Latitude Service in a homogenous system 1899.9–1979.0. Techn. Rep., Central Bureau Int. Polar Motion Service, Misuzawa.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Helmut Wilhelm Walter Zürn Hans-Georg Wenzel

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this chapter

Cite this chapter

Plag, HP. (1997). Chandler wobble and pole tide in relation to interannual atmosphere-ocean dynamics. In: Wilhelm, H., Zürn, W., Wenzel, HG. (eds) Tidal Phenomena. Lecture Notes in Earth Sciences, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0011463

Download citation

  • DOI: https://doi.org/10.1007/BFb0011463

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62833-0

  • Online ISBN: 978-3-540-68700-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics