Chandler wobble and pole tide in relation to interannual atmosphere-ocean dynamics

  • Hans-Peter Plag
Ocean Tides And Related Phenomena
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 66)


Since the discovery of the Chandler wobble in polar motion more than a century ago, the cause of the wobble remained obscure. As long as one assumes the observed wobble to be a free damped mode of the rotating Earth, a reoccurring excitation of the wobble has to be assumed likewise. Neither the cause and mechanism of this excitation nor the damping of the wobble have satisfactorily been explained. Furthermore, the analyses of polar motion data under the above assumption lead to contradictory results, namely (1) a multi-frequency or a single frequency wobble, (2) an amplitude-dependent frequency, (3) a large diversity of Q-values.

A detailed study of polar motion, oceanographic, and meteorological data gave rise to the hypothesis that the observed wobble in fact is a forced oscillation, with a slightly variable forcing frequency. The consequences of this hypothesis are discussed. A possible forcing mechanism is found in a large-scale, quasi-periodic variation in air pressure within the Chandler band. This fourteen-to-sixteen months atmospheric fluctuation is responsible for most of the oceanic pole tide hitherto attributed to the Chandler wobble, and it is the most prominent candidate for forcing the observed wobble.

Regarding the observed Chandler wobble as a forced resonant phenomenon and not as a purely free wobble raises the question of the true Chandler period and the wobble Q. However, the determination of both, period and Q, is strongly limited by the amount of available data and the still unknown amplitude of the forcing function.


Window Length Polar Motion Resonance Curve Pole Position Instantaneous Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, R. T. H., Hide, R., White, A. A., and Wilson, C. A. 1983. Atmospheric angular momentum fluctuation, length-of-day changes and polar motion. Proc. Royal Soc.. A 387: 31–73.Google Scholar
  2. Bryson, R. A. and Starr, T. B. 1977. Chandler tides in the atmosphere. J. Atmos. Sci.. 34: 1975–1986.Google Scholar
  3. Carter, W. E. 1981. Frequency modulation of the Chandlerian component of polar motion. J. geophys. Res.. 86: 1653–1658.Google Scholar
  4. Chandler, S. C. 1891. On the variation of latitude, II. Astron. J.. XI: 65–70.Google Scholar
  5. Chandler, S. C. 1892. On the variation of latitude, VII. Astron. J.. XII: 97–101.Google Scholar
  6. Chandler, S. C. 1893. On the variation of latitude, VIII. Astron. J.. XIII: 159–162.Google Scholar
  7. Chandler, S. C. 1902. Astron. J.. 22: 154.Google Scholar
  8. Chao, B. F. 1983. Autoregressive harmonic analysis of the Earth's polar motion using homogeneous International Latitude Service data. J. geophys. Res.. 88: 10299–10307.Google Scholar
  9. Chao, B. F. and Au, A. Y. 1991. Atmospheric excitation of the earth's annual wobble: 1980–1988. J. geophys. Res.. 96: 6577–6582.Google Scholar
  10. Christie, A. S. 1900. The latitude variation tide. Bull. Phil. Soc. Washington. 13: 103–122.Google Scholar
  11. Colombo, G. and Shapiro, I. I. 1968. Theoretical model for the Chandler wobble. Nature. 217: 156–157.Google Scholar
  12. Currie, R. G. 1974. Period and Q w of the Chandler Wobble. Geophys. J. R. astr. Soc.. 38: 179–185.Google Scholar
  13. Currie, R. G. and Hameed, S. 1990. Atmospheric signals at high latitudes in a coupled ocean-atmosphere general circulation model. Geophys. Res. Lett.. 17: 945–948.Google Scholar
  14. Dahlen, F. A. 1971. The excitation of the Chandler wobble by earthquakes. Geophys. J. R. astr. Soc.. 25: 157–206.Google Scholar
  15. Dahlen, F. A. 1973. A correction to the excitation of the Chandler wobble by earthquakes. Geophys. J. R. astr. Soc.. 32: 203–217.Google Scholar
  16. Daillet, S. 1981. Secular variation of the pole tide: correlation with Chandler Wobble ellipticity. Geophys. J. R. astr. Soc.. 65: 407–421.Google Scholar
  17. Demaree, G. R. and Nicolis, C. 1990. Onset of Sahelian drought viewed as a fluctuation-induced transition. Q. J. R. Meteorol. Soc.. 116: 221–238.Google Scholar
  18. Dickman, S. R. 1979. Continental drift and true polar wandering. Geophys. J. R. astr. Soc.. 57: 41–50.Google Scholar
  19. Dickman, S. R. 1981. Investigation of Controversial Polar Motion Features Using Homogeneous International Latitude Service Data. J. geophys. Res.. 86: 4904–4912.Google Scholar
  20. Dickman, S. R. 1988. The self-consistent dynamic pole tide in non-global oceans. Geophys. J. Int.. 94: 519–543.Google Scholar
  21. Dickman, S. R. and Steinberg, J. R. 1986. New aspects of the equilibrium pole tide. Geophys. J. R. astr. Soc.. 86: 515–529.Google Scholar
  22. Ellsaesser, H. W., MacCracken, M. C., Walton, J. J., and Grotch, S. L. 1986. Global climatic trends as revealed by the recorded data. Rev. Geophys.. 24: 745–792.Google Scholar
  23. Furuya, M. and Chao, B. F. 1996. Estimation of period and q of the Chandler wobble. Geophys. J. Int.. 127: 693–702.Google Scholar
  24. Furuya, M., Hamano, Y., and Naito, I. 1996. Quasi-periodic wind signal as possible excitation of Chandler wobble. J. geophys. Res.. 101: 25537–25546.Google Scholar
  25. Gaposchkin, E. M. 1972. Analysis of pole positions from 1846–1970. In: Rotation of the Earth, pp. 19–32. P. Melchior, S. Yumi (eds). Reidel, Dordrecht.Google Scholar
  26. Goossens, C. and Berger, A. 1986. Annual and seasonal climatic variations over the northern hemisphere and Europe during the last century. Ann. Geophys.. 4: 385–400.Google Scholar
  27. Goossens, C. and Berger, A. 1987. How to recognize an abrupt climatic change? In: Abrupt Climatic Change, Evidence and Implications. pp. 31–47. W. H. Berger and L. Labeyrie (eds.). Reidel, Dordrecht.Google Scholar
  28. Graber, M. A. 1976. Polar motion spectra based upon Doppler, IPMS and BIH data. Geophys. J. R. astr. Soc.. 46: 75–85.Google Scholar
  29. Gross, R. S. 1985. Signal detection techniques applied to the Chandler Wobble. J. geophys. Res.. 90: 10281–10290.Google Scholar
  30. Gross, R. S. 1986. The influence of earthquakes on the Chandler wobble during 1977–1983. Geophys. J. R. astr. Soc.. 85: 161–177.Google Scholar
  31. Gross, R. S. 1990. The secular drift of the rotation pole. In: Earth Rotation and Coordinate Reference Frames. pp. 146–153. Boucher, C., Wilkins, C.A. (eds.). Springer, New York.Google Scholar
  32. Guinot, B. 1972. The Chandlerian nutation from 1900 to 1970. Astron. Astrophys.. 19: 207–214.Google Scholar
  33. Guinot, B. 1978. Rotation of the earth and polar motion services. In: Proc. of the 9th GEOP Conference.Google Scholar
  34. Guinot, B. 1982. The Chandlerian Nutation from 1900 to 1980. Geophys. J. R. astr. Soc.. 71: 295–301.Google Scholar
  35. Hameed, S. and Currie, R. G. 1989. Simulation of the 14-Month Chandler Wobble in a Global Climate Model. Geophys. Res. Lett.. 16: 247–250.Google Scholar
  36. Haubrich, R. A. and Munk, W. 1959. The pole tide. J. geophys. Res.. 64: 2373.Google Scholar
  37. Haubrich, R. A. 1970. An examination of the data relating pole motion to earthquakes. In: Earthquake Displacement Fields and the Rotation of the Earth. Mansinha, L., Smylie, D.E., Beck, A.E. (eds.). Reidel, Dordrecht.Google Scholar
  38. Hide, R. 1984. Rotation of the atmospheres of the Earth and planets. Phil. Trans. R. Soc. London A. 313: 107–121.Google Scholar
  39. Jones, P. D., Raper, S. C. B., Bradley, R. S., Diaz, H. F., Kelly, P. M., and Wigley, T. M. L. 1986. Northern hemispheric surface air temperature variations: 1851–1984. J. Clim. and App. Met.. 25: 161–179.Google Scholar
  40. Kanamori, H. 1976. Are earthquakes a major cause of the Chandler wobble? Nature. 262: 254–255.Google Scholar
  41. Kendall, M. and Stuard, A. 1979. The advanced theory of statistics. Vol. 2 Inference and relationship. Griffin and Co..Google Scholar
  42. Kikuchi, I. and Naito, I. 1982. Sea surface temperature (SST) analyses near the Chandler period. In: Proc. Int. Latitude Observ. Mizusawa. 21: 64–70.Google Scholar
  43. Kolaczek, B. 1989. Observational determination of the Earth's rotation. In: Gravity and Low Frequency Geodynamics. pp. 295–361. R. Teisseyre (ed.). Elsevier Warszawa.Google Scholar
  44. Kolaczek, B. and Hua, Y. S. 1991. Astronomical Series of Earth rotation parameters. 177: 121–138.Google Scholar
  45. Kuehne, J., Wilson, C. R., and Johnson, S. 1996. Estimates of the Chandler wobble frequency and Q. J. geophys. Res., 101: 13573–13579.Google Scholar
  46. Lambeck, K. 1980. The Earth's Variable Rotation: Geophysical Causes and Consequences. Cambridge University Press.Google Scholar
  47. Lambeck, K. 1988. Geophysical Geodesy — The Slow Deformations of the Earth. Oxford Science Publications.Google Scholar
  48. Lenhardt, H. and Groten, E. 1985. Chandler wobble parameters from BIH and ILS data. Manuscripta Geodaetica. 10: 296–305.Google Scholar
  49. Maddox, J. 1988. Earthquakes and the Earth's rotation. Nature. 332: 11.Google Scholar
  50. Maksimov, I. V. 1954. On long period tidal phenomena in the sea and in the atmosphere of the earth (in Russian). Trans. Inst. Okeanol.. 8: 18–40.Google Scholar
  51. Maksimov, I. V., Kraklin, V. P., Sarukhanyan, E. I., and Smirnov, N. P. 1967. Nutational migration of the Iceland Low. Dokl. Akad. Nauk SSSR. 177: 3–6.Google Scholar
  52. Mansinha, L. and Smylie, D. E. 1970. Seismic excitation of the Chandler wobble. In: Earthquake Displacement Fields and the Rotation of the Earth. Mansinha, L., Smylie, D.E., Beck, A.E. (eds.). Reidel, Dordrecht.Google Scholar
  53. Mansinha, L., Smylie, D. E., and Chapman, C. H. 1979. Seismic excitation of the Chandler wobble revisited. Geophys. J. R. astr. Soc.. 59: 1–17.Google Scholar
  54. Merriam, J. B. 1982. Meteorological excitation of the annual polar motion. Geophys. J. R. astr. Soc.. 70: 41–56.Google Scholar
  55. Mulholland, J. R. and Carter, W. E. 1982. Seth Carlo Chandler and the observational origins of geodynamics. In: High-precision Earth rotation and Earth-Moon dynamics. Proc. 63rd Colloq. Int. Astr. Union, Grasse, France. pp. XV–XIX. O. Calame (ed.). Reidel, Dordrecht.Google Scholar
  56. Munk, W. H. and MacDonald, G. J. F. 1960. The Rotation of the Earth. Cambridge University Press, Cambridge.Google Scholar
  57. Naito, I. 1977. Secular variation of the pole tide. J. Phys. Earth. 125: 221–231.Google Scholar
  58. Newcomb, S. 1891. Astron. J.. 11: 81–83.Google Scholar
  59. Okubo, S. 1982. Is the Chandler period variable? Geophys. J. R. astr. Soc.. 71: 629–646.Google Scholar
  60. Ooe, M. 1978. An optimal complex ARMA model of the Chandler wobble. Geophys. J. R. Astr. Soc.. 53: 445–457.Google Scholar
  61. Pejovič, N. and Vondràk, J. 1991. Polar motion: Observations and atmospheric excitation. Techn. Rep. IUGG Special Study Group 5–98, Bull. 5.Google Scholar
  62. Plag, H.-P. 1988. A regional study of Norwegian coastal long-period sea-level variations and their causes with special emphasis on the Pole Tide. Berl. Geowiss. Abhandl. Reihe A. 14: 1–175.Google Scholar
  63. Plag, H.-P. 1993. The “sea level rise” problem: An assessment of methods and data. In: Proc. Int. Coastal Congr., Kiel 1992. pp. 714–732. P. Lang Verlag, Frankfurt.Google Scholar
  64. Plag, H.-P. 1995. Coastal relative sea level: A valuable indicator of climate variability? In: Abstr., XXI Gen. Assembly Int. Union. Geodesy Geophys.: B 317.Google Scholar
  65. Preisig, J. R. 1992. Polar motion, atmospheric angular momentum excitation and earthquakes — correlations and significance. Geophys. J. Int.. 108: 161–178.Google Scholar
  66. Runcorn, S. K., Wilkins, G. A., Groten, E., Lenhardt, H., Campbell, J., Hide, R., Chao, B. F., Souriau, A., Hinderer, J., Legros, H., LeMouel, J.-L., and Feissel, M. 1988. The excitation of the Chandler Wobble. Surveys Geophys.. 9: 419–449.Google Scholar
  67. Schlesinger, M. E. and Ramankutty, N. 1994. An oscillation in the global climate system of 65–70 years. Nature. 367: 723–726.Google Scholar
  68. Schweydar, W. V. 1916. Die Bewegung der Drehachse der elastischen Erde im Erdkörper und im Raum. Astron. Nachr.. 203: 103–114.Google Scholar
  69. Smith, M. L. 1977. Wobble and nutation of the earth. Geophys. J. R. astr. Soc.. 50: 103–140.Google Scholar
  70. Smylie, D. E. and Mansinha, L. 1971. The elasticity theory of dislocations in real earth models and changes in the rotation of the Earth. Geophys. J. R. astr. Soc.. 23:, 329–354.Google Scholar
  71. Sneyers, R. 1975. Sur l'analyse statistique des séries d'observations. Note Techn. 143, OMM-No. 415, Geneva.Google Scholar
  72. Souriau, A. 1986. Random walk of the Earth's pole related to the Chandler wobble excitation. Geophys. J. R. astr. Soc.. 86: 455–465.Google Scholar
  73. Starr, T. 1983. On the dynamic atmospheric response to the Chandler wobble forcing. J. Atmos. Sci.. 40: 929–940.Google Scholar
  74. Tsimplis, M. N., Flather, R. A., and Vassie, J. M. 1994. The North Sea Pole Tide described through a tide-surge numerical model. Geophys. Res. Lett.. 21: 449–452.Google Scholar
  75. vanDam, T. M., Blewitt, G., and Heflin, M. B. 1994. Atmospheric pressure loading effects on Global Positioning System coordinate determinations. J. geophys. Res.. 99: 23939–23950.Google Scholar
  76. Vanicek, P. 1970. An analytical technique to minimize noise in a search for lines in the low frequency spectrum. Observ. Royal Belg., Comm. A. 96: 170–173.Google Scholar
  77. Volland, H. 1996. Atmosphere and Earth's rotation. Surveys Geophys.. 17: 101–144.Google Scholar
  78. Vondràk, J. 1985. Long-period behaviour of polar motion between 1900.0 and 1984.0. Ann. Geophys.. 3: 351–356.Google Scholar
  79. Wilson, C. R. and Haubrich, R. A. 1976a. Atmospheric contribution to the excitation of the Earth's wobble 1901–1970. Geophys. J. R. astr. Soc.. 46: 745–760.Google Scholar
  80. Wilson, C. R. and Haubrich, R. A. 1976b. Meteorological excitation of the Earth's wobble. Geophys. J. R. astr. Soc.. 46: 707–743.Google Scholar
  81. Wilson, C. R. and Vicente, R. O. 1980. An analysis of the homogeneous ILS polar motion series. Geophys. J. R. astr. Soc.. 62: 605–616.Google Scholar
  82. Wilson, C. R. and Vicente, R. O. 1990. Maximum likelihood estimates of polar motion parameters. In: Variations in Earth Rotation. Geophys. Monographs. 59: 151–155. D. D. McCarthy and W. E. Carter (eds.). Am. geophys. Union, Washington D. C.Google Scholar
  83. Xie, L. and Dickman, S. R. 1996. Tide gauge analysis of the pole tide in the North Sea. Geophys. J. Int.. 126: 863–870.Google Scholar
  84. Yumi, S. and Yokoyama, K. 1980. Results of the International Latitude Service in a homogenous system 1899.9–1979.0. Techn. Rep., Central Bureau Int. Polar Motion Service, Misuzawa.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Hans-Peter Plag
    • 1
  1. 1.Institut für GeophysikChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations