Advertisement

Ocean tides

  • Wilfried Zahel
Ocean Tides And Related Phenomena
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 66)

Abstract

According to their spatial scales and to the generation mechanisms applying, tidal phenomena in the sea are presented together with hydrodynamic models explaining their existence and appearance. The astronomical tide generating forces, to which the tidal variations of the ocean state variables can finally be traced, have planetary scale and therefore can directly excite tidal oscillations in the open ocean. Applying models of schematic ocean basins and of the real global ocean elucidate the dependence of theses forced oscillations on the free oscillation properties of ocean basins and on physical processes. Introducing data information into hydrodynamic-numerical tide models of the global ocean by employing a data assimilation procedure turns out to considerably contribute to the computation of realistic tidal fields and of realistic dependent geophysical quantities. The dynamics governing co-oscillating tides in shelf and adjacent sea areas are discussed subsequently. Having in view analytical wave solutions to the tidal equations, in many cases allows to recognize the importance of specific waves for the formation of tidal regimes. The increasing importance of frictional effects in shelf and adjacent sea areas becomes particularly apparent in current field properties, and quasi-resonantly amplified diurnal and semidiurnal tidal waves originating from the open ocean make clear the decisive role these areas are playing in the tidal energy budget. Proceeding to tidal phenomena characterized by further reduced spatial scales, the existence of over- and compound tides with in parts remarkable energy contents is assigned to nonlinear interactions between tidal waves in shallow water areas. The energy transfer from the astronomical tides to over- and compound tides becomes obvious when applying hydrodynamic-numerical models which include such areas as well as the shelf edge and slope. Also internal tidal motions cannot directly be excited, instead corresponding variations of currents and stratifications with often considerable amplitudes are due to energy transfer from the barotropic tides referred to above.

Keywords

Free Oscillation Tidal Wave Internal Tide Ocean Tide Tidal Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accad, Y., Pekeris, C.L. 1978. Solution of the tidal equations for the M2 and S2 tides in the world ocean alone. Phil. Trans. R. Soc. London A. 290: 235–266.Google Scholar
  2. Brown, P.J. 1973. Kelvin-wave reflection in a semi-infinite canal. J. Mar. Res. 31: 1–10.Google Scholar
  3. Cartwright, D.E., Huthnance, J.M., Spencer, R. and Vassie, J.M. 1980. On the St. Kilda shelf tidal regime. Deep-Sea Res. 27: 61–70.Google Scholar
  4. Davies, A.M., Furnes, G.K. 1980. Observed and Computed M2 Tidal Currents in the North Sea. J. Phys. Oceanogr. 10: 237–257.Google Scholar
  5. Doodson, A.T. 1964. Oceanic tides. Adv. Geophys. 5: 117–152.Google Scholar
  6. Dronkers, J.J. 1964. Tidal computation in rivers and coastal waters. pp. 1–299. North Holland Publ. Comp.Google Scholar
  7. Eanes, R., Bettadpur, S. 1995. The CSR3.0 Global Ocean Tide Model. Center Space Research, Techn. Memorandum CSR-TM-95-06.Google Scholar
  8. Egbert, G.D., Bennett, A.F., Foreman, M.G.G. 1995. TOPEX/POSEIDON tides estimated using a global inverse model. J. geophys. Res. 99: 821–24, 852.Google Scholar
  9. Garrett, C.J.R., Munk, W.H. 1971. The age of the tide and the Q of the oceans. Deep-Sea Res. 18: 493–504.Google Scholar
  10. Gaviño, J.H. 1984. On the calculation of resonance oscillations of a World Ocean's finite difference model by means of the Lanczos method. Mitt. Inst. Meereskd. Univ. Hamburg 27: 1–78.Google Scholar
  11. Gotlib, V.Y., Kagan, B.A. 1982. Numerical simulation of the tides in the world ocean: 3. A solution to the spectral problem. Dt. hydrogr. Z. 35: 45–58.Google Scholar
  12. Grawunder, D. 1996. Assimilation von Daten in ein numerisches Modell der Gezeiten des Weltozeans. Dissertation Univ. Hamburg.Google Scholar
  13. Hendershott, M.C., Speranza, A. 1971. Co-oscillating tides in long narrow bays; the Taylor problem revisited. Deep-Sea Res. 18: 959–980.Google Scholar
  14. Hendershott, M.C. 1977. Numerical models of ocean tides. The Sea: Ideas and Observations on Progress in the Study of the Seas 6: 47–95. John Wiley, New York.Google Scholar
  15. Huang, D. 1995. Modelling studies of barotropic and baroclinic dynamics in the Bohai Sea. Berichte ZMK Univ. Hamburg. 17: 1–26.Google Scholar
  16. Kagan, B.A. 1974. Hydrodynamic models of tidal motions at sea. Techn. Transl. DMAAC-TC-2028 St. Louis 1–260.Google Scholar
  17. Kowalik, Z., Proshutinsky, A.Y. 1994. The Arctic Ocean Tides. Geophys. Monograph 85. Am. Geophys. Union. pp. 137–158.Google Scholar
  18. Le Provost, C. 1991. Generation of overtides and compound tides (Review). In: Tidal Hydrodynamics. pp. 269–295. John Wiley, New York.Google Scholar
  19. Longuet-Higgins, M.S., Pond, G.S. 1970. The free oscillations of fluid on a hemisphere bounded by meridians of longitude. Phil. Trans. Roy. Soc. London A. 266: 193–223.Google Scholar
  20. Marchuk, G.I., Kagan, B.A. 1986. Dynamics of ocean tides. In: Oceanographic Sciences Library. 3: 1–327. Kluwer Academic Publ.Google Scholar
  21. Meincke, J. 1978. Measurements of currents and stratification during the GATE Equatorial Experiment — Data Report. Meteor. Forsch.-Ergebnisse A. 20: 81–100.Google Scholar
  22. Mihardja, D.K. 1991. Energy and momentum budget of the tides in Indonesian Waters. Berichte ZMK Univ. Hamburg. 14: 1–183.Google Scholar
  23. Mittelstaedt, E., Lange, W., Brockmann, C., Soetje, K.C. 1983. Die Strömungen in der Deutschen Bucht. Dtsch. Hydrograph. Inst., Hamburg. 2347: 1–141.Google Scholar
  24. Munk, W., Snodgrass, F., Wimbush, M. 1970. Tides Off-Shore: Transition from California Coastal to Deep-Sea Waters. Geophys. Fluid Dynamics. 1: 161–235.Google Scholar
  25. Mysak, L.A. 1980. Topographically trapped waves. Ann. Rev. Fluid Mech. 12: 45–76.Google Scholar
  26. Platzman, G.W., Curtis, G.A., Hansen, K.S. and Slater, R.D. 1981. Normal modes of the World Ocean. Part II: Description of modes in the period range 8 to 80 hours. J. Phys. Oceanogr. 11: 579–603.Google Scholar
  27. Röber, K. 1970. Analytische und numerische Lösungen für Mitschwingungsgezeiten in einem Rechteckbecken konstanter Tiefe unter Berücksichtigung von Bodenreibung, Corioliskraft und horizontalem Austausch. Mitt. Inst. Meereskd. Univ. Hamburg. 16: 1–119.Google Scholar
  28. Sandstrom, H. 1991. The origin of internal tides (A revisit). In: Tidal Hydrodynamics. pp. 437–447. John Wiley, New York.Google Scholar
  29. Schwiderski, E.W. (1983). Atlas of ocean tidal charts and maps, I, The semidiurnal principal lunar tide M2. Mar. Geod. 6: 219–265.Google Scholar
  30. Schwiderski, E.W. 1985. On tidal friction and the deceleration of the Earth's rotation and Moon's revolution. Mar. Geod. 9: 399–450.Google Scholar
  31. Scherneck, H.-G. 1990. Loading Green's function for a continental shield with a Q-structure for the mantle and density constraints from the geoid. Bull. Inform. Marées Terr. 108: 7775–7792.Google Scholar
  32. Seiler, U. 1989. An investigation to the tides of the world ocean and their instantaneous angular momentum budgets. Mitt. Inst. Meereskd. Univ. Hamburg. 29: 1–104.Google Scholar
  33. Smithson, M.J. 1992. Pelagic tidal constants 3. Publ. Sci. Int. Assoc. Phys. Sci. Oceans. 35: 1–191.Google Scholar
  34. Stawarz, Z.M. 1994. Bestimmung von Geoidkorrekturen der Südostasiatischen Gewässer aus simulierten und altimetrischen Meeresoberflächenhöhen. Diplomarbeit Univ. Hamburg 1–104.Google Scholar
  35. Taylor, G.I. 1920. Tidal oscillations in gulfs and rectangular basins. Proc. London Math. Soc. 20: 148–181.Google Scholar
  36. Walters, R.A., Werner, F.E. 1991. Nonlinear generation of overtides, compound tides, and residuals. Tidal Hydrodynamics. pp. 297–320. John Wiley, New York.Google Scholar
  37. Webb, D.J. 1980. A model of continental-shelf resonances. Deep-Sea Res. 23: 1–15.Google Scholar
  38. Webb, D.J. 1980. Tides and tidal friction in a hemispherical ocean centered at the equator. Geophys. J. Roy. astron. Soc. 61: 573–600.Google Scholar
  39. Wunsch, C. 1975. Internal tides in the ocean. Rev. Geophys. Space Phys. 13: 167–182.Google Scholar
  40. Zahel, W. 1978. The influence of solid earth deformations on semi-diurnal and diurnal oceanic tides. In: Tidal friction and Earth's rotation I. pp. 98–124. Springer, Heidelberg.Google Scholar
  41. Zahel, W. 1986. Mathematical modelling of global interaction between ocean tides and earth tides. Phys. Earth Planet. Inter. 21: 202–217.Google Scholar
  42. Zahel, W. 1986. Astronomical tides. In: Landoldt-Börnstein, New Series V/3c. pp. 83–134. Springer, Heidelberg.Google Scholar
  43. Zahel, W. 1990. The influence of ocean and solid earth parameters on oceanic eigenoscillations, tides and tidal dissipation. Geophysical Monograph 59: 33–41. Am. Geophys. Union.Google Scholar
  44. Zahel, W. 1991. Modeling ocean tides with and without assimilating data. J. geophys. Res. 96 20379–20391.Google Scholar
  45. Zahel, W. 1995a. Assimilating ocean tide determined data into global tidal models. J. Mar. Systems. 6: 3–13.Google Scholar
  46. Zahel, W. 1995b. The influence of assimilated data in global ocean and loading tide modeling. In: Proc. 12th Int. Symp. on Earth Tides. pp. 413–422. H.-T. Hsu (ed.). Science Press Beijing.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Wilfried Zahel
    • 1
  1. 1.Institut für MeereskundeUniversität HamburgHamburgGermany

Personalised recommendations