Advertisement

The nearly-diurnal free wobble-resonance

  • Walter Zürn
Earth Tides
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 66)

Abstract

The theoretical background and observational results for the nearly-diurnal free wobble, one of the rotational eigenmodes of the earth, are presented. Especially the evidence for a shift in eigenfrequency with respect to the value computed for an earth in hydrostatic equilibrium is presented and possible implications are discussed.

Keywords

Very Long Baseline Interferometry Outer Core Earth Tide Love Number Superconducting Gravimeter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abours, S., Lecolazet, R. 1979. New results about the dynamical effects of the liquid outer core as observed at Strasbourg. In: Proc. 8th Int. Symp. Earth Tides. pp. 689–697. Bonatz, M. and Melchior, P. (eds.), Bonn.Google Scholar
  2. Agnew, D. C., Berger, J., Farrell, W. E., Gilbert, J. F., Masters, G., Miller, D. 1986. Project IDA: A Decade in Review. EOS — Trans. Am. geophys. Un. 67: 203–211.Google Scholar
  3. Blum, P. A., Hatzfeld, D., Wittlinger, G. 1973. Résultats expérimentaux sur la fréquence de résonance due à l'effet dynamique du noyau liquide. C. R. Acad. Sci. Paris 277, Ser. B: 241–244.Google Scholar
  4. Chao, B. F. 1985. As the World Turns. EOS Trans. Am. Geophys. Union 66: 766–770.Google Scholar
  5. Cummins, P. R., Wahr, J. M. 1993. A Study of the Earth's Free Core Nutation Using IDA Gravity Data. J. geophys. Res. 98: 2091–2104.Google Scholar
  6. Defraigne, P., Dehant, V., Hinderer, J. 1994. Stacking gravity tide measurements and nutation observations in order to determine the complex eigenfrequency of the nearly diurnal free wobble. J. geophys. Res. 99: 9203–9213, and Correction 100: 2041–2042.Google Scholar
  7. Dehant, V. 1988. Nutations and inelasticity of the Earth. In: The Earth's Rotation and Reference Frames for Geodesy and Geodynamics. pp. 323–329. A. Babcock, G. Wilkins (eds.). Kluwer, Dordrecht, Holland.Google Scholar
  8. Dehant, V., Hinderer, J., Legros, H., Lefftz, M. 1993. Analytical approach to the computation of the Earth, the outer core and the inner core rotational motions. Phys. Earth planet. Inter. 76: 259–282.Google Scholar
  9. De Vries, D., Wahr, J. M. 1991. The Effects of the Solid Inner Core and Nonhydrostatic Structure on the Earth's Forced Nutations and Earth Tides. J. geophys. Res. 96: 8275–8293.Google Scholar
  10. Dickey, J. O. 1995. Earth Rotation. In: Global Earth Physics — A Handbook of Physical Constants. pp. 356–368. T. J. Ahrens (ed.). Am. Geophys. Union, Washington.Google Scholar
  11. Florsch, N., Chambat, F., Hinderer, J., Legros, H. 1994. A simple method to retrieve the complex eigenfrequency of the Earth's nearly diurnal-free wobble; application to the Strasbourg superconducting gravimeter data. Geophys. J. Int. 116: 53–63.Google Scholar
  12. Forte, A. M., Mitrovica, J. X., Woodward, R. L. 1995. Seismic-geodynamic determination of the origin of excess ellipticity of the core-mantle boundary. Geophys. Res. Lett. 22: 1013–1016.Google Scholar
  13. Goodkind, J. M. 1983. Q of the nearly diurnal free wobble. In: Proc. 9th Int. Symp. Earth Tides. pp. 569–575. J. T. Kuo (ed.). Schweizerbart, Stuttgart.Google Scholar
  14. Gwinn, C., Herring, T. A., Shapiro, I. I. 1986. Geodesy by Radio Interferometry: Studies of the Forced Nutations of the Earth. 2. Interpretation. J. geophys. Res. 91: 4755–4765.Google Scholar
  15. Haas, R., Schuh, H. 1996. Determination of frequency dependent Love and Shida numbers from VLBI data. Geophys. Res. Lett. 23: 1509–1512Google Scholar
  16. Herring, T. A., Dong, D. 1994. Measurement of diurnal and semidiurnal rotational variations and tidal parameters of Earth. J. geophys. Res. 99: 18051–18071.Google Scholar
  17. Hinderer, J., Legros, H., Amalvict, M. 1982. A search for Chandler and nearly diurnal free wobbles using Liouville equations. Geophys. J. R. astr. Soc. 71: 303–332.Google Scholar
  18. Hinderer, J., Zürn, W., Legros, H. 1991. Interpretation of the Strength of the NDFW Resonance from Stacked Gravity Tide Observations. In: Proc. 11th Int. Symp. Earth Tides. pp. 549–555. J. Kakkuri (ed.). Schweizerbart, Stuttgart.Google Scholar
  19. Hopkins, W. 1839. Researches in physical geology. Phil. Trans. R. Soc. London 129: 381–423.Google Scholar
  20. Hough, S. S. 1895. The oscillations of a rotating ellipsoidal shell containing fluid. Phil. Trans. R. Soc. London 186: 469–506.Google Scholar
  21. Jeffreys, H., Vicente, R. O. 1957. The theory of nutation and the variation of latitude. Mon. Not. R. astr. Soc. 117: 162–173.Google Scholar
  22. Jiang, X., Smylie, D. E. 1995. A search for free core nutation modes in VLBI nutation observations. Phys. Earth planet. Inter. 90: 91–100.Google Scholar
  23. Lambeck, K. 1980. The Earth's Variable Rotation. 446 pp. Cambridge University Press, Cambridge, England.Google Scholar
  24. Lambeck, K. 1988. Geophysical Geodesy: The Slow Deformations of the Earth. 718 p. Clarendon Press, Oxford.Google Scholar
  25. Lecolazet, R. 1983. Correlation between Diurnal Gravity Tides and the Earth's Rotation Rate. In: Proc. 9th Int. Symp. Earth Tides. pp. 527–530. J. T. Kuo (ed.). Schweizerbart, Stuttgart.Google Scholar
  26. Levine, J. 1978. Strain-tide spectroscopy. Geophys. J. Int. 54: 27–41Google Scholar
  27. Levine, J., Harrison, J. C., Dewhurst, W. 1986. Gravity Tide Measurements with a Feedback Gravimeter. J. geophys. Res. 91: 12835–12841.Google Scholar
  28. Lumb, L. I., Jarvis, G. T., Aldridge, K. D., DeLandro-Clarke, W. 1995. The period of the free core nutation: towards a dynamical basis for an ‘extra-flattening’ of the core-mantle boundary. Phys. Earth planet. Inter. 90: 255–271.Google Scholar
  29. Masters, T. G., Widmer, R. 1995. Free Oscillations: Frequencies and Attenuations. In: Global Earth Physics — A Handbook of Physical Constants. pp. 104–125. T. J. Ahrens (ed.). Am. Geophys. Union, Washington.Google Scholar
  30. Mathews, P. M., Buffett, B. A., Herring, T. A., Shapiro, I. I. 1991a. Forced Nutations of the Earth: Influence of Inner Core Dynamics 1. Theory. J. geophys. Res. 96: 8219–8242.Google Scholar
  31. Mathews, P. M., Buffett, B. A., Herring, T. A., Shapiro, I. I. 1991b. Forced Nutations of the Earth: Influence of Inner Core Dynamics 2. Numerical Results and Comparisons. J. geophys. Res. 96: 8243–8257.Google Scholar
  32. Mathews, P. M., Buffett, B. A., Shapiro, I. I. 1995. Love numbers for diurnal tides: Relation to wobble admittances and resonance expansions. J. geophys. Res. 100: 9935–9948.Google Scholar
  33. Melchior, P. 1980. For a clear terminology in the polar motion investigations. In: Nutations and the Earth's Rotation. pp. 17–21. E. P. Fedorov, M. L. Smith and P. L. Bender (eds.), Intern. Astron. Union, Kiev.Google Scholar
  34. Melchior, P. 1981. The tides of the planet earth. pp. 1–609. Pergamon Press, Oxford.Google Scholar
  35. Merriam, J. 1994. The Free Core Nutation Resonance in Gravity. Geophys. J. Int. 119: 369–380.Google Scholar
  36. Molodenskii, M. S. 1961. The theory of nutation and diurnal Earth Tides. Comm. Obs. R. Belg. 188: 25–56.Google Scholar
  37. Munk, W. H., MacDonald, G. J. F. 1960. The rotation of the Earth. Cambridge Univ. PressGoogle Scholar
  38. Neuberg, J., Hinderer, J., Zürn, W. 1987. Stacking Gravity Tide Observations in Central Europe for the Retrieval of the Complex Eigenfrequency of the Nearly Diurnal Free Wobble. Geophys. J. R. astr. Soc. 91: 853–868Google Scholar
  39. Neuberg, J., Hinderer, J., Zürn, W. 1990. On the Complex Eigenfrequency of the “Nearly Diurnal Free Wobble” and its Geophysical Interpretation. In: Variations in Earth's Rotation, Geophys. Monogr. 59: 11–16. D. D. McCarthy, W. E Carter (eds.). AGU and IUGG, Washington, D. C..Google Scholar
  40. Neuberg, J., Zürn, W. 1986. Investigation of the Nearly Diurnal Resonance Using Gravity, Tilt and Strain Data Simultaneously. In: Proc. 10th Int. Symp. Earth Tides. pp. 305–311. R. Vieira (ed.). Cons. Sup. Invest. Scient., Madrid.Google Scholar
  41. Neumeyer, J., Dittfeld, H.-J. 1997. Results of three years observation with a super-conducting gravimeter at the GeoForschungsZentrum Potsdam. J. Geodesy. 71: 97–102.Google Scholar
  42. Poincaré, H. 1910. Sur la précession des corps déformables. Bull. Astr. 27: 321–356.Google Scholar
  43. Polzer, G., Zürn, W., Wenzel, H.-G. 1996. NDFW Analysis of Gravity, Strain and Tilt Data from BFO. Bull. Inf. Marées Terrestres 125: 9514–9545.Google Scholar
  44. Richter, B., Wenzel, H.-G., Zürn, W., Klopping, F. 1995. From Chandler wobble to free oscillations: comparison of cryogenic gravimeters and other instruments in a wide period range. Phys. Earth planet. Inter. 91: 131–148.Google Scholar
  45. Richter, B., Zürn, W. 1988. Chandler Effect and the Nearly Diurnal Free Wobble as Determined from Observations with a Superconducting Gravimeter. In: The Earth's Rotation and Reference Frames for Geodesy and Geodynamics.. pp. 309–315. A. Babcock, G. Wilkins (eds.). Kluwer, Dordrecht, Holland.Google Scholar
  46. Rochester, M. G., Jensen, O. G., Smylie, D. E. 1974. A Search for the Earth's ‘Nearly Diurnal Free Wobble'. Geophys. J. R. astr. Soc. 38: 349–363.Google Scholar
  47. Sasao, T., Okamoto, I., Sakai, S. 1977. Dissipative core-mantle coupling and nutational motion of the Earth. Publs. astr. Soc. Japan 29: 83–105.Google Scholar
  48. Sasao., T., Okubo, S., Saito, M. 1980. A Simple Theory on the Dynamical Effects of a Stratified Fluid Core upon Nutational Motion of the Earth. In: Proc. IAU Symp.: Nutation and the Earth's Rotation. 78: pp. 165–183. E. P. Fedorov, M. L. Smith, P. L. Bender (eds.). Reidel, Dordrecht, Holland.Google Scholar
  49. Sato, T. 1991. Fluid Core Resonance Measured by Quartz Tube Extensometers at Esashi Earth Tide Station. In: Proc. 11th Int. Symp. Earth Tides.. pp. 573–582. J. Kakkuri (ed.). Schweizerbart, Stuttgart.Google Scholar
  50. Sato, T., Tamura, Y., Higashi, T., Takemoto, S., Nakagawa, I., Morimoto, N., Fukuda, Y., Segawa, J., Seama, N. 1994. Resonance Parameters of Nearly Diurnal Free Core Nutation Measured from Three Superconducting Gravimeters in Japan. J. Geomagn. Geoelectr. 46: 571–586.Google Scholar
  51. Schwahn, W. 1995 Effects of inertial forces due to the forced nutation on the gravimetric factor in the diurnal range. Bull. Inf. Marées Terrestres 121: 9036–9042.Google Scholar
  52. Sludskii, F. 1896. De la rotation de la Terre supposée fluide a son interieur. Bull. Soc. Natur. Moscou 9: 285–318.Google Scholar
  53. Smith, M. L. 1977. Wobble and nutation of the earth. Geophys. J. R. astr. Soc. 50: 103–140.Google Scholar
  54. Smith, M. L., Dahlen, F. A. 1981. The period and Q of the Chandler Wobble. Geophys. J. R. astr. Soc. 64: 223–281.Google Scholar
  55. Toomre, A. 1974. On the ‘Nearly Diurnal Wobble’ of the Earth. Geophys. J. R. astr. Soc. 38: 335–348.Google Scholar
  56. Wahr, J. M. 1981. Body Tides on an Elliptical, Rotating, Elastic and Oceanless Earth. Geophys. J. R. astr. Soc. 64: 677–703.Google Scholar
  57. Wahr, J. M., Bergen, Z. 1986. The Effects of Mantle Anelasticity on Nutations, Earth Tides, and Tidal Variation in Rotation Rate. Geophys. J. R. astr. Soc. 87: 633–668.Google Scholar
  58. Wahr, J., de Vries, D. 1989. The possibility of lateral structure inside the core and its implications for nutation and Earth tide observations. Geophys. J. Int. 99: 511–519.Google Scholar
  59. Wahr, J. M., de Vries, D. 1990. The Earth's Forced Nutations: Geophysical Implications. In: Variations in Earth's Rotation, Geophys. Monogr. 59: 79–84. D. D. McCarthy, W. E Carter (eds.). AGU and IUGG, Washington, D. C..Google Scholar
  60. Wenzel, H.-G. 1994. Earth tide analysis package ETERNA 3.0. Bull. Inf. Marées Terrestres 118: 8719–8721.Google Scholar
  61. Wu, X., Wahr, J. M. 1997. Effects of non-hydrostatic core-mantle boundary topography and core dynamics on Earth rotation. Geophys. J. Int. 128: 18–42.Google Scholar
  62. Yoder, C. F., Ivins, E. R. 1988. On the ellipticity of the core-mantle boundary from earth nutations and gravity. In: The Earth's Rotation and Reference Frames for Geodesy and Geodynamics.. pp. 316–325. A. Babcock, G. Wilkins (eds.). Kluwer, Dordrecht, Holland.Google Scholar
  63. Zürn, W., Rydelek, P. A., Richter, B. 1986. The Core-resonance Effect in the Record from the Superconducting Gravimeter at Bad Homburg. In: Proc. 10th Int. Symp. Earth Tides.. pp. 141–147. R. Vieira (ed.). Cons. Sup. Invest. Cient., Madrid.Google Scholar
  64. Zürn, W., Wenzel, H.-G., Laske, G. 1991. High quality data from LaCoste-Romberg gravimeters with electrostatic feedback: a challenge for superconducting gravimeters. Bull. Inf. Marées Terrestres 110: 7940–7952.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Walter Zürn
    • 1
  1. 1.Black Forest ObservatoryWolfachGermany

Personalised recommendations